Indirect ice detection for the hybrid ice detection system

SAE symposium

Falk Sachs, Christoph Deiler
(DLR – German Aerospace Center)
22 October 2020

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253
In Aviation

шей Icing is a relevant issue for aviation
 - Safety of flight
 - Turnaround time
 - Costs and resources

шей Factors increasing likelihood to encounter icing:
 - High speed relative to ice or fluid particles
 - Wide range of temperatures during one single flight
 - All kinds of atmospheric disturbances and weather phenomena
 - Long ranges passing different climate zones
Dangers of Icing in Flight

Vertical Tail Plane
- Control degradation
- Drag increase

Elevator Gap
- Control degradation

Stabilizer
- Control degradation
- Drag increase

Engines
- Danger of flameout or damage due to contaminants

Aileron Gap
- Control degradation

Wing
- Performance loss
- Control degradation

Fuselage
- Drag increase
- Collected contaminant ice layer

Sensors
- Malfunction
- Blockage

SENS4ICE, EU-funded project, Grant Agreement No 824253
22/10/2020
Means to Identify Icing

- Visual cues
- Change in powersetting
- Weather forecast / radar
- Pilot experience

[Links and images related to aviation and icing]
Situational Awareness

- Cues for the flight crew are given but not 100% reliable.

- Today’s situation:
 - Ice detection by performance monitoring is commonly established in commercial aviation
 - Pilot experience and procedures play a significant role in counteracting icing
 - Room for interpretation – room for false or missed decisions
Indirect Ice Detection within the Hybrid Ice Detection System

Direct Sensors focus on the surrounding environment
- Atmospheric icing conditions detectors
- Median volume diameter (MVD)
- Liquid water content (LWC)
- Air temperature
- Ice accretion rate (IAR)
- ...

Indirect System regards the aircraft itself
- Engine parameters
- Aero parameters
- Inertial data
- Aircraft configuration
- ...

The mix of internal and external information creates additional value
- Reliability
- Accuracy
Indirect System Design

- **Engine Data**
 - N1
 - Torque
 - NPropeller

- **Inertial Data**
 - Rates
 - Accelerations
 - Speeds
 - Mass/Inertia

- **Aerodynamic Data**
 - Airspeed
 - Angle of Attack
 - Angle of Sideslip

- **Control Data**
 - Control Surface Position
 - Configuration

Performance Calculations

\[\dot{E}_{total} = \sum_{k=0}^{n} \ldots \ldots \]

Reference Model

- \(\dot{E}_{total,ref} \)

Comparison

- \(\Delta \dot{E} \)

Alert

Detection

SED4ICE, EU-funded project, Grant Agreement No 824253
System Performance

Conflicting demands

Detection time

- Early detection information
- Enable early countermeasures
- Faster than any hazardous effects could occur

Trade-Off

Detection accuracy/reliability

- Prevent false alarms
- Increase reliability of detection information
- Increase situational awareness
- Basis for automatic system response

System is based on ice accretion effects on performance (continuous change, no significant step)

→ Determine a threshold that represents the necessary compromise
Detection Performance I

Reference Aircraft
No Ice

Calculated Aircraft
Iced

Lift coefficient

Drag coefficient

0.5 Quantile
0.9 Quantile
0.99 Quantile
0.9999 Quantile
1 Quantile
best fit
Detection Performance II

Necessary:

- Good aerodynamic database / model
- Good engine database / model
- Sufficient sensor quality and quantity
- Sufficient computing power

<table>
<thead>
<tr>
<th></th>
<th>EMB Phenom 300</th>
<th>ATR 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data available</td>
<td>2.3 million flight data samples</td>
<td>80000 flight data samples</td>
</tr>
<tr>
<td>Parameter of S4I flight test configuration</td>
<td>Flight tests with clean aircraft before icing flight's for parameter adjustment</td>
<td></td>
</tr>
</tbody>
</table>
Detection Threshold

- Threshold determination depends on several factors
 - Aircraft type
 - Features of the specific A/C type
 - Critical ice accretion
 - Corresponding change of flight characteristics
 - Expectable ice accretion rate
 - Flight speed and trimming
 - Collection efficiency
 - Accuracy of calculations depend on quality of
 - Used reference (thrust models, aerodynamic database, flight test database)
 - Flight data (sample times, delays, synchronization, sensor quality)

- Poor data quality causes miscalculations
 - Filtering necessary to prevent multiple false alarms
 - Time delay before reliable detection alert
 - Higher threshold value to prevent false alarms
Indirect System in S4I Flight Test

- Basic Indirect Ice Detection System design is generic
- Switches and different datasets (configuration and reference) foreseen for two flight test campaigns

American Campaign
- EMB Phenom 300
- Direct Sensors
- Aircraft Bus System
- ATR FDAU + Safire Measurement Installation

European Campaign
- ATR 42 SAFIRE
- Direct Sensors

HIDS = Hybrid Ice Detection System

- Input Conversion and selection
- IIDS = Indirect Ice Detection System
- Performance Calculation
- Reference Calculation
- Comparison and Alert
- Evaluation & Arbitration

- Choice of A/C,
- A/C parameters,
- …
Outlook

(SENS4ICE aims for flight tests of the indirect ice detection system in the frame of the hybrid ice detection system)

- It will be tested on a jet as well as a turboprop aircraft

- All flight data gathered will be used for tuning of the current system and for future system design changes (offline and post flight)
This project has received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement n° 824253.

Falk Sachs, DLR – falk.sachs@dlr.de

Visit our website www.sens4ice-project.eu and Linkedin #sens4iceproject