

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

The SENS4ICE EU project - SENSors and certifiable hybrid architectures for safer aviation in ICing Environment A project midterm overview - October 2021 Carsten Schwarz – DLR Institute of Flight Systems SAE AC-9C Aircraft Icing Technology Committee Meeting 21 OCT 2021

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

SENS4ICE Project Overview <u>SENS</u>ors and certifiable hybrid architectures for safer aviation in <u>ICing Environment</u>

- JAN 2019 DEC 2022 (project extension expected)
- Coordinator: DLR
- Budget:

total estimated eligible costs	11.9 M EUR
max. EU contribution	6.6 M EUR
project effort in person-months approx.	1100 PM

- https://www.sens4ice-project.eu
- #sens4iceproject on LinkedIn

— October 2021

SENS4ICE Consortium Partners

EMBRAER 7)

- AVIONS DE TRANSPORT REGIONAL (ATR)
- 3) **AEROTEX UK LLP**
- CENTRAL AEROLOGICAL OBSERVATORY 4)
- CENTRO ITALIANO RICERCHE AEROSPAZIALI 5) SCPA (CIRA)
- 6) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)

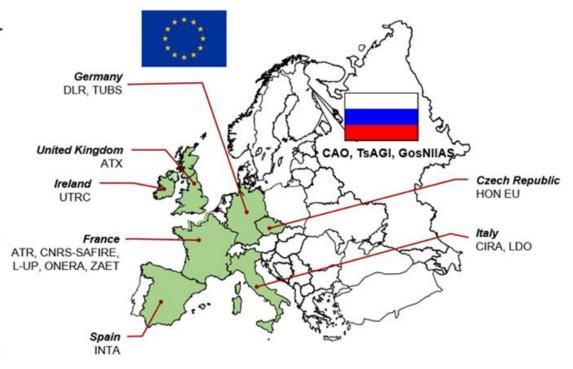
EMBRAER SA

STATE RESEARCH INSTITUTE OF AVIATION 8) **SYSTEMS**

- HONEYWELL INTERNATIONAL SRO 9)
 - 10)INSTITUTO NACIONAL DE TECNICA **AEROESPACIAL ESTEBAN TERRADAS (INTA)**

- LEONARDO SOCIETA PER AZIONI
- L-UP SAS
- OFFICE NATIONAL D'ETUDES ET DE 13) **RECHERCHES AEROSPATIALES (ONERA)**
- FEDERAL STATE UNITARY ENTERPRISE THE 14) CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PROF. N.E. ZHUKOVSKY (TsAGI)
- **TECHNISCHE UNIVERSITAET BRAUNSCHWEIG** 15)
- RAYTHEON TECHNOLOGIES RESEARCH 16)CENTER
- SAFRAN AEROTECHNICS 17)
- 18) HONEYWELL INTERNATIONAL INC
- **COLLINS AEROSPACE** 19)
- NATIONAL RESEARCH COUNCIL CANADA 20)

Honeywell THE FUTURE IS WHAT WE MAKE IT



Conseil national de recherches Canada

SENS4ICE international collaboration and cooperation

- InCo international cooperation flagship: Aviation International Cooperation Flagship "Safer and Greener Aviation in a Smaller World"
- 20 project parties (11 countries)
 - 13 European/7 international
 - 9 research centers, 1 university, 9 industrial partners (OEMs and system developers), 1 consultancy partner

- Advisory Board (9 members)
 - aviation certification authorities (EASA, FAA, ANAC)
 - manufacturing (Bombardier, Gulfstream, Airbus DS, DAHER)
 - research (ITA, NLR)
 - operations (VC Vereinigung Cockpit, German Pilot's Association)
- Coordination with EU icing projects ICE GENESIS and MUSIC-haic

SENS4ICE Goal/ Impact

Problem

Detect icing conditions (including App. O/ SLD icing) – detection very challenging

Solution

Hybrid approach – fusion of input data: sensor(s) and indirect detection

Benefits

- Operational benefits:
 - activate anti-/de-icing
 - avoid/ leave icing conditions
- Certification process benefits flights in App. O/ SLD icing
 - safety risk due to severe and unknown aircraft icing
 - In online evaluation of safety margins during flight tests/ certification flights

SENS4ICE Scope and positioning

- SENS4ICE fills the gap of SLD icing detection (App. 0)
 → hybridisation of different detection techniques
- ♦ Technology development, test, validation and maturation with specific regards to integration of hybrid system architectures
 → TRL 5 of hybrid system at the end of SENS4ICE
- Technology demonstration in relevant icing conditions:
 - icing wind tunnels
 - flight test
 - \rightarrow SENS4ICE will provide large data base of icing conditions
- ♦ Close cooperation with regulation authorities for development of new certifiable hybrid ice detection system
 → SENS4ICE will provide an acceptable means of compliance
- \rightarrow SENS4ICE contributes to increase aviation safety in SLD icing conditions

BACKUP

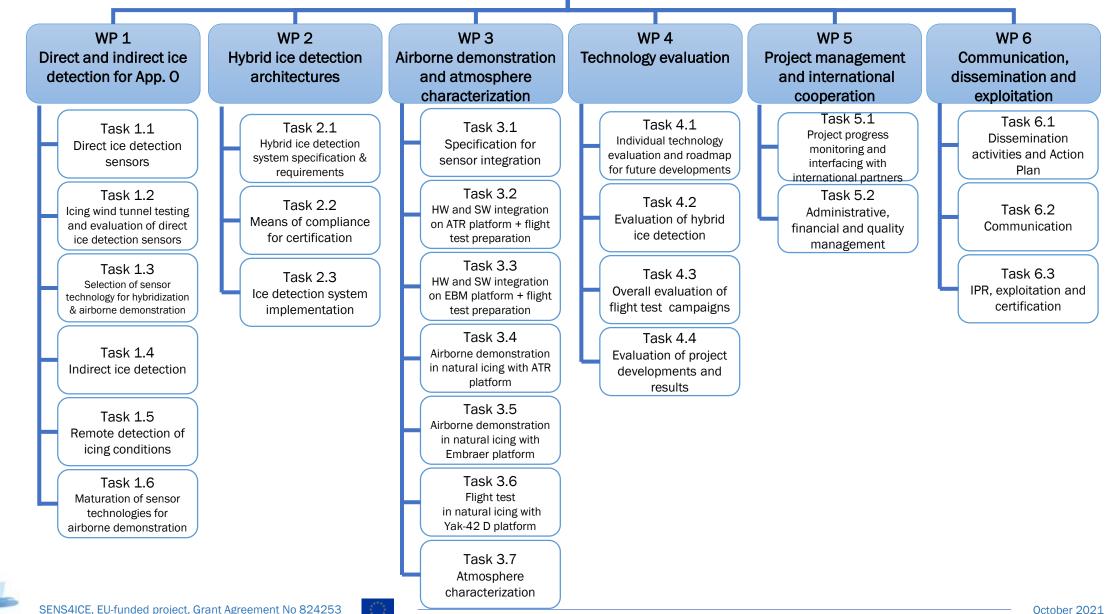
Expected impact

- Contribute to increased flight safety by fewer accidents and less in-flight events worldwide
- Contribute to reduce costs for all stakeholders by improved and internationally accepted certification rules, standards and means of compliance, covering all types of icing hazards
- Contribute to decrease delays in operations thanks to more efficient avoidance of icing hazards and to fewer damages in need of inspection and repair

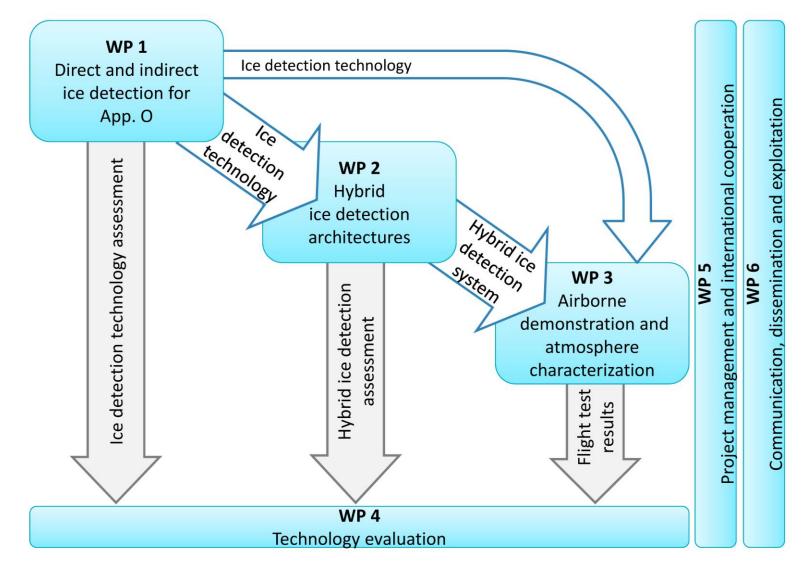
BACKUP

Layered Approach on Ice Detection

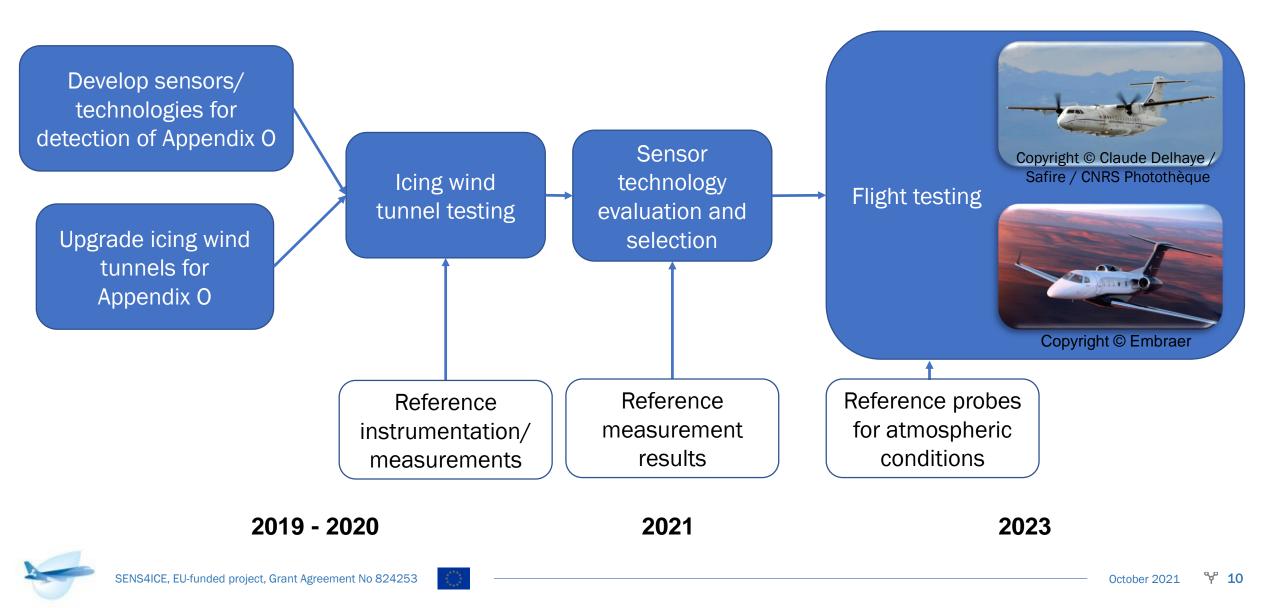
SENS4ICE will address this challenge of reliably detecting and avoiding App. O SLD conditions with a unique layered safety approach:


<u>Strategic:</u> flight planning based on	<u>Tactical:</u> new nowcasting to enhance actual situational awareness in avoidance of hazardous icing conditions.
based on new enhanced	In situ: new hybrid detection of icing conditions and accretion to trigger IPS and safe exit strategy
weather forecast.	<u>Contingency:</u> new detection of reduction in aircraft flight envelope (loss of control prevention)

 \rightarrow Hybrid ice detection is central technology and key to this approach


SENSors and certifiable hybrid architectures <u>for</u> safer aviation in <u>IC</u>ing <u>E</u>nvironment SENS4ICE

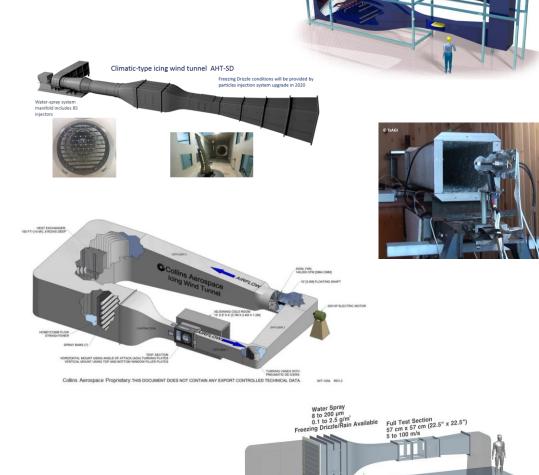
BACKUP



Technical Work Packages Interrelation

SENS4ICE Timeline

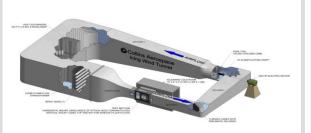
WP1: Direct and indirect ice detection for App. O High Level Objectives


Main Objective: Develop technologies capable of detecting App. O icing conditions using a three-pronged approach:

- Direct detection: development of in situ sensors capable of ice detection
 - 10 technologies under EU-funded development representing a variety of physical detection principles
 - Evaluation in icing wind tunnel tests under simulated App. O conditions four tunnel facilities/total of 28 weeks testing time
 - Two-stage evaluation/selection process to ensure most promising sensors advance to flight test (WP3)
- Indirect detection: utilising existing sensor information and aircraft performance reference data for early detection of airframe icing
- Remote detection: development of methods to detect App. O conditions before the aircraft enters the hazard area
 - Detection and Nowcasting: development of algorithms that combine meteorological factors retrieved from satellite data to detect and forecast (very short-term range) icing threats in App. O conditions
 - Polarimetric weather radar: development of algorithms to classify icing threats and identify App. O conditions

SENS4ICE research facilities: Icing Wind Tunnels

- ♦ TU Braunschweig
 - SLD capabilities available and enhanced during SENS4ICE
- TsAGI AHT SD and EU-1:
 - SLD capabilities developed during SENS4ICE
- Collins Aerospace
 - SLD capabilities available and enhanced during SENS4ICE
- National Research Council Canada
 - SLD capabilities available during SENS4ICE
- Total testing time: 28 weeks
- Planned time frame: NOV 2020 MAR 2021



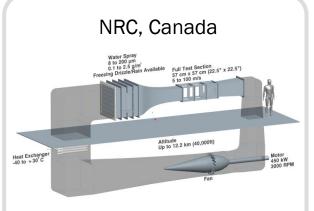
Heat Exchange

Altitude Up to 12.2 km (40,000ft)

Overview of SENS4ICE IWT Capabilities

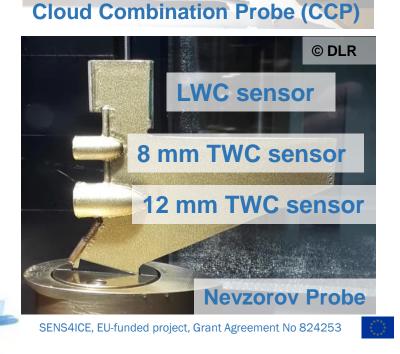
Collins Aerospace, USA

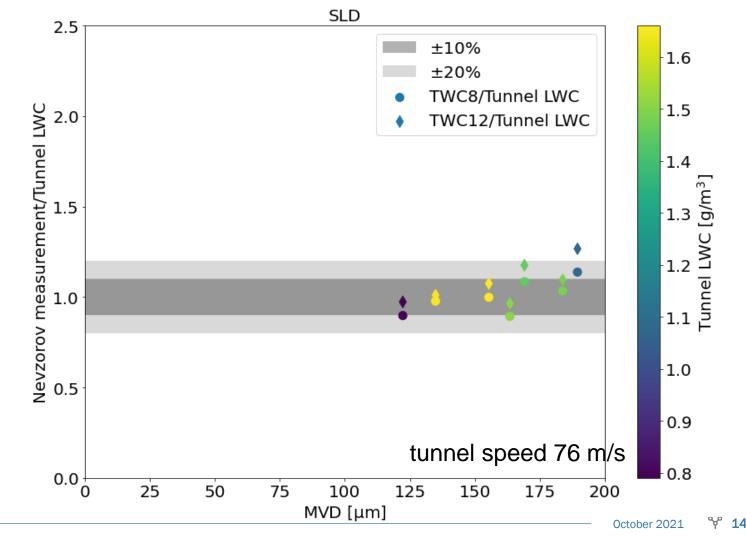
- 5-147 micron droplets
- LWC between 0.1 and 3 g/m3
- Temperature 0°C to -30°C
- Sustained speed 13-103 m/s
- Test section: 152×56×112 cm3
- Calibrated per SAE ARP 5905
- Compliant with AS9100C
- Controls and power supplies can simulate aircraft controls



• MVD 9-60 micron droplets

- LWC between 0.1 and 1.5 g/m3
- Temperature 30°C to -20°C
- Sustained speed 10-40 m/s
- Test section: 150×50×50 cm3
- Calibrated per SAE ARP 5905
- Short spray transients ~ 15s
- Bi-modal SLD and mixed phase capability


- 10-90 micron droplets
- LWC between 0.5 and 6 g/m3
- Temperature down to -40°C
- Sustained speed up to 150 m/s
- Test section: 300×100×100 cm3
- PDI Artium 2D PSD calibration
- LWC calibration with EIV-2K
- High speed camera with longfocus microscope


- 8-200 micron droplets
- LWC between 0.1 and 2.5 g/m3
- Supercooled Water: 10 to > 200 µm (incl. SLD bi-modal)
- Temperature +30°C to -40°C
- Sustained speed 5-100 m/s
- Test section: 57×57 cm2 (52x33 cm2 with insert)
- Sea level < Altitude < 40,000ft
- Calibrated per SAE ARP 5905

Reference Instrumentation & Measurements

Reference measurements (Nevzorov probe) in SLD conditions
generally good agreement with tunnel LWC data (SEA probe)
for MVDs < 180 um, Nevzorov and SEA probe agree within 20%

BACKUP

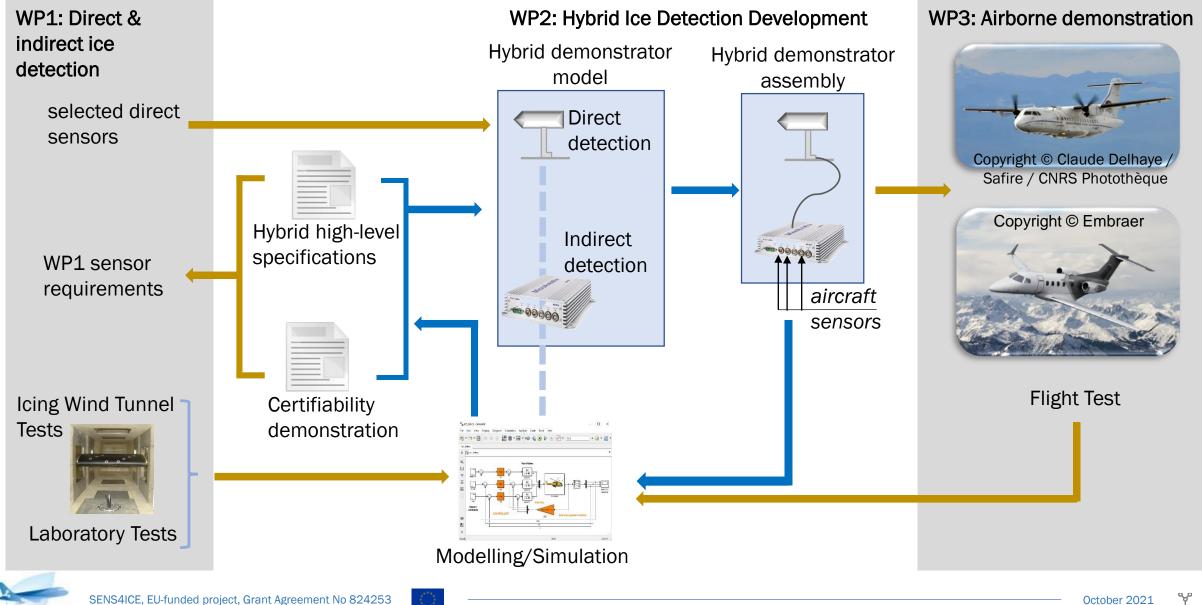
WP2: Hybrid Ice Detection

Robust Hybrid Ice Detection:

different techniques for direct sensing of atmospheric conditions and/or ice accretion **indirect** techniques to detect change of aircraft characteristics with ice accretion on airframe

Development, test, validation and maturation of different technologies for

- direct ice detection
- indirect ice detection


Objectives for hybrid ice detection

- 1. Hybrid ice detection system specification
- 2. Certification programme for hybrid ice detection system
- 3. Hybrid ice detection system modelling
- 4. Hybrid ice detection design, build & assembly (+ TRL 5 review)

in close cooperation with OEMs and certification authorities during SENS4ICE

WP2: Hybrid Ice Detection – Development Workflow

WP3: Airborne demonstration and atmosphere characterisation

dedicated to airborne technology demonstration in relevant icing conditions

Objectives

- Issue main requirements and constraints for integration of sensors and probes on flight test platforms
- Release flight test program for testing new individual and hybrid technologies in distinct icing conditions
- Perform airborne demonstration in natural icing conditions:
 - in Europe with CNRS/SAFIRE ATR-42
 - in North America with Embraer Phenom 300
 - in Russia with Yak-42D "Roshydromet"
- Characterisation of atmosphere from flight test campaigns in App. O conditions

Guidance by special Flight Test Committee (FTC) formed by platform providers and leaders of WP1, WP2 and WP4 to ensure harmonised preparation and execution of individual flight test campaigns

SENS4ICE research facilities: Flight Test Platforms

- total flight test time:
- planned main time frame:

125h in natural icing conditions

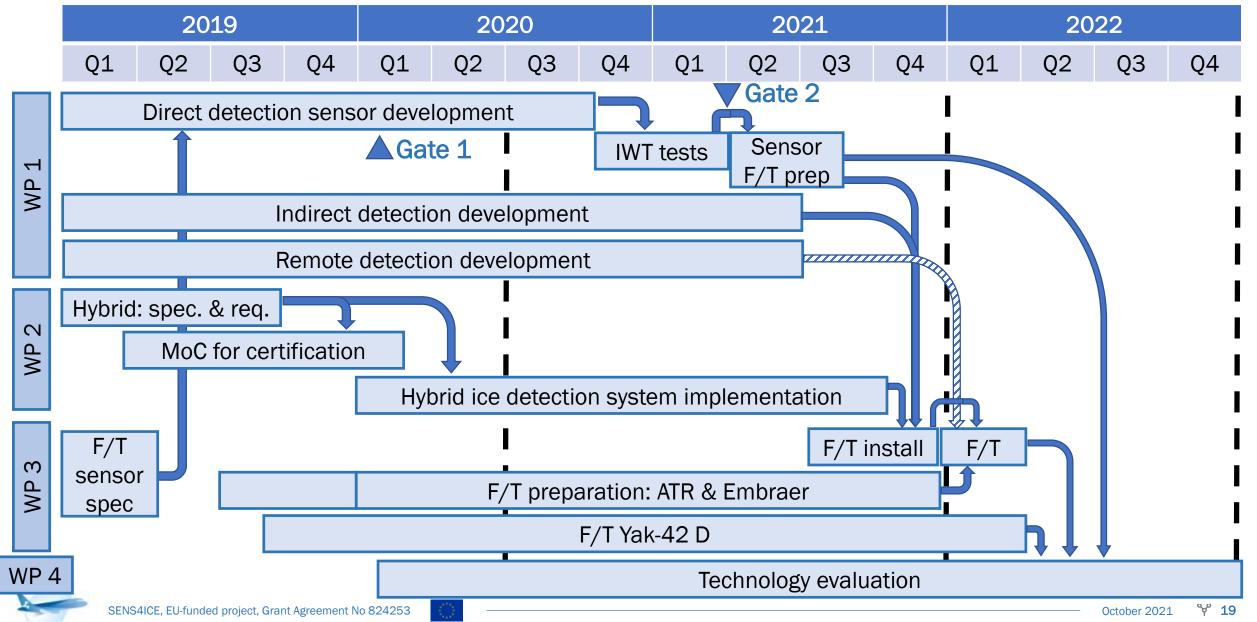
Q1/2022 (delays due to Covid-19)

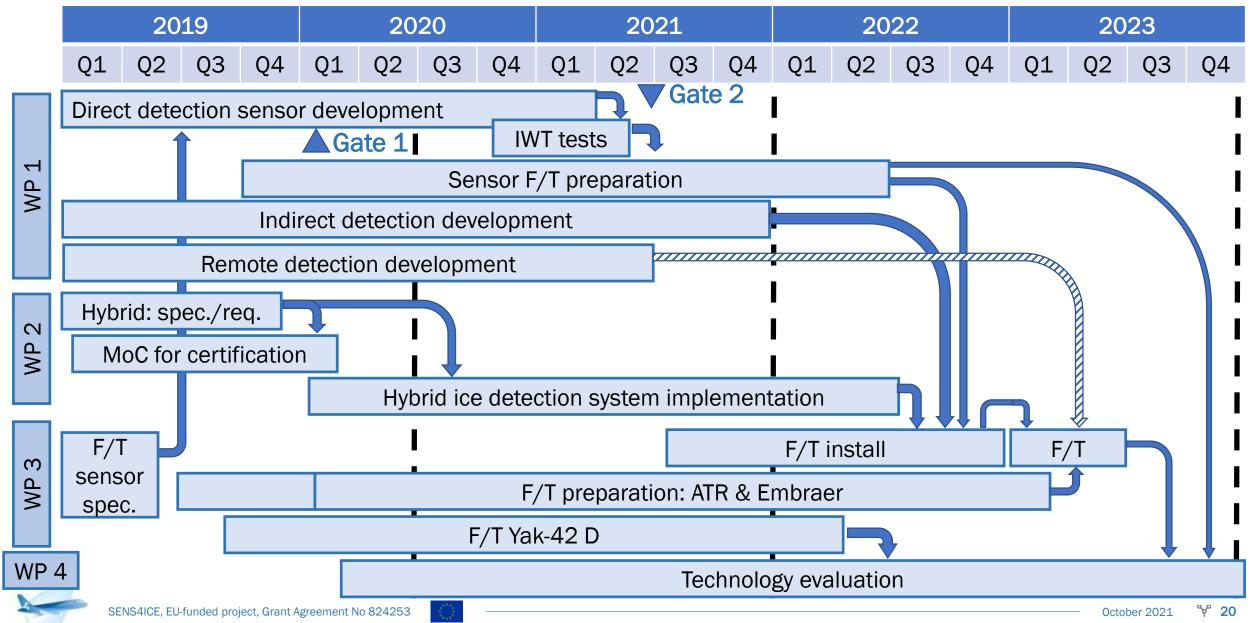
SAFIRE ATR-42

Copyright © SAFIRE/JC Canonici

Embraer Phenom 300

Copyright © Embraer


CAO Yak-42D Roshydromet


Copyright © TsAGI/CAO

SENS4ICE Timescale (simplified Gantt – original/ 4 years) **BACKUP**

SENS4ICE Timescale (simplified Gantt – extended/ 5 years)

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

<u>https://www.sens4ice-project.eu</u> in <u>https://www.linkedin.com/company/sens4ice-project</u>

SENS4ICE