

June 20-22, 2023 Vienna, Austria

International Conference on Icing of Aircraft, Engines, and Structures

sae.org/icing

June 20-22, 2023 Vienna, Austria

International Conference on Icing of Aircraft, Engines, and Structures

Characterization of atmospheric icing conditions during the HALO-(AC)³ campaign with the Nevzorov probe and the Backscatter Cloud Probe with Polarization Detection

Johannes Lucke, Tina Jurkat-Witschas, Darrel Baumgardner, Frank Kalinka, Manuel Moser, Elena de la Torre Castro, Christiane Voigt

In-flight measurements of icing conditions

Outline

- 1. Instrumentation
- 2. Overview of the flight
- 3. Characterization of the BCPD
- 4. LWC and TWC measurements from Nevzorov and BCPD
- 5. Comparison to ADWICE

- Accurate and timely detection of atmospheric icing conditions is essential for safety of flight.
- Microphysical parameters required:

 \rightarrow Liquid water content (LWC)

\rightarrow Particle size distribution (PSD)

• Real time knowledge of atmospheric conditions could help to optimize flight plans of other aircraft

Instruments used for this study

Instrument	Size range [µm]
Backscatter Cloud Probe with Polarization Detection (BCPD)	2 - 42 µm
Nevzorov	n/a
Cloud Droplet Probe (CDP)	2 – 50 µm
Cloud Imaging Probe (CIP)	15 – 960 μm
Precipitation Imaging Probe (PIP)	100 – 6400 μm

- Nevzorov probe with an 8 and a 12 mm cone.
- Collection efficiency of 12 mm cone from Lucke et al. 2022.

Overview of the research flight

- Large variability of LWC encountered during the flight
- A multitude of different cloud types were measured

Overview of the research flight

SAE International®

International Conference on Icing of Aircraft, Engines, and Structures

Paper 2023-01-1485

The BCPD

- Small, lightweight instrument, that can be integrated into the fuselage of aircraft
- Precursor instrument (BCP) flies on IAGOS aircraft (Beswick et. al 2014)
- Measures shape and size of particles with diameters between 2-42 μm

Properties of the BCPD

- The BCPD collects light from a solid angle centered on $\theta = 155^{\circ}$, $\phi = 0$ The apex angle is 18.5°
- The BCPD laser is polarized in the x-z plane
- Spherical particles do not depolarize incident light

SAE International®

International Conference on Icing of Aircraft, Engines, and Structures

- The Mie scattering response is computed for infinitesimal differential scattering cross sections
- The total scattering response is obtained by integration over all elements
- For the computations a modified version of the pyScatmech program is used

$$\mathbf{S}_{s} = \int_{\theta_{min}}^{\theta_{max}} \int_{\phi_{min}(\theta)}^{\phi_{max}(\theta)} \mathbf{M}(\theta) \, \mathbf{R}(\phi) \, \mathbf{S}_{i} \, \mathrm{d}\phi \, \mathrm{d}\theta$$

- Spherical particles scatter light with a well defined polarization ratio (PR)
- Aspherical particles scatter light with a wide range of PRs
- Fit of characteristic functions to the depolarization data
- Ratio of spherical to aspherical particles can be determined
- The approach only works for particles with diameters > 10 μm

- The BCPD laser has a gaussian intensity profile
- →Undersizing of particles that pass through the edges of sample area
- Undersizing can be described as:
 y = Ax
- Goal: Retrieve true size distribution
 x

Correction of particle size measurements

• True size distribution: **x** = **A**⁻¹**y**

 \rightarrow ill-posed problem with no exact solution

• We implement the smooth-Twomey algorithm from Beswick et al. (2014)

SAL International®

International Conference on Icing of Aircraft, Engines, and Structures

Paper 2023-01-1485

Comparison of microphysical parameters from BCPD and CDP

- Number concentrations (N) in disagreement
- BCPD measures only 60% of N of CDP
- MVDs agree within ±20%
- Very good agreement between LWCs.

SAE International®

International Conference on Icing of Aircraft, Engines, and Structures

Comparison to Ice Wind Tunnel data

- Also much lower number concentrations of BCPD compared to CDP
- MVDs match perfectly.

SAE International® International Conference on Icing of Aircraft, Engines, and Structures

Shattering

- Ice crystals shatter on the fuselage and are detected by BCPD
- Number of measured ice crystals by BCPD is incorrect, but presence of ice crystals / mixed phase conditions can be detected

Correcting Nevzorov measurements with data from the BCPD

• Measurements of the Nevzorov probe need to be corrected for collision efficiency effects to obtain accurate LWC and TWC values

SAE International®

International Conference on Icing of Aircraft, Engines, and Structures

Comparison of icing detections to ADWICE predictions

- ADWICE predictions of icing encounters are mostly in agreement with insitu observations
- Predictions of high severity correspond to regions with high LWC
- At times ice clouds are mistaken for liquid clouds

SAE International® International Conference on Icing of Aircraft, Engines, and Structures

Conclusions

Advantages of the BCPD

- Lightweight, no additional drag
- Few Mie-ambiguities in the scattering cross section curve
- Differentiation of spherical and aspherical particles

Challenges

- Correction of undersizing effects
- Shattering on the fuselage
- Location on fuselage likely alters measured size distributions

Applications

- Suited for research missions where no underwing probes can be deployed
- Detection of mixed-phase and ice
- Size distributions useful for collision efficiency correction of Hotwire probes
- Validation of icing forecast products

Johannes Lucke

Deutsches Zentrum für Luft- und Raumfahrt Münchener Straße 20 82234 Wessling Email: Johannes.lucke@dlr.de Phone: +498153283423