

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Fiber Bragg Grating Sensors ice detection

Miguel González del Val (INTA)

SAE International Conference on Icing (Vienna - Austria) – June 20-22, 2023

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

INDEX

1. Physical Explanation

- a. Fiber Bragg Gratings as temperature sensors
- b. Heat fluxes involved in the problem
- 2. Detection Principles
- 3. Ice Accretion Rate indirect Calculation
- 4. Appendix C/O discrimination
- 5. Icing Wind Tunnel Tests Results
- 6. Flight Tests Results

How do Fiber Bragg Gratings work?

Temperature distribution in an airfoil

Heat Flux Distribution

Detection Principles

- Detection is based on abrupt temperature changes
- In order to define what is abrupt Discrete Wavelet Analysis (DWT) is used
 - DWT can classify the signal in function of its abruptness
 - Thresholds were optimized for maximize detection and minimize false positives

T(ºC)

2023

Ice Accretion Rate indirect Calculation

- Ice accretion rate could be calculated from the heat flux equation
- Uncertainty in:
 - Ice density (changes depending on the conditions)
 - Convective heat transfer coefficient
 - Ice thickness already accreted (energy lost in conduction

$$\frac{\mathrm{d}\Delta}{\mathrm{d}t} = \frac{\mathrm{h}_{0}(T_{\mathrm{sur}} - T_{\mathrm{rec}})}{\rho_{ice} \left(c_{p,is} \left(T_{sur} - T_{mp} \right) + \frac{V_{\infty}^{2}}{2} + L_{f} - c_{p,w} \left(T_{mp} - T_{\infty} \right) \right)}$$

The ice accretion rate can be calculated all over the chord

Appendix C/O Discrimination

- Appendix C: MVD = 22 μm
- Appendix O: MVD = 167 μm

Icing Wind Tunnel Results

- According to ED-103 standards
- The tests were carried out in NRC
- The data was post processed and a LWC and IAR assessment was done
- An Appendix C/O discrimination was done
- Detection time was measured and compared with ED-103 standard
- The sensor detected when the fogging started and ended

TEST MATRIX

Case	Condition	Airspeed	Static Temperature	MVD	LWC	Case	Condition	Airspeed	Static Temperature	MVD	LWC
		[m/s]	[°C]	[µ m]	[g/m ³]			[m/s]	[°C]	[µ m]	[g/m ³]
1	LW-C CM	40,1	-20	15	0,3	19	LW-C IM	84,9	-3,5	35	1
2	LW-C CM	40,1	-10	20	0,42	20	unimodal	76,1	-17,7	163,5	0,82
3	LW-C CM	84,9	-10	23	0,34	21	unimodal	40,1	-17,7	122	0,46
4	LW-C CM	40,1	0	23	0,54	22	LW-FZDZ	79,7	-20	106	0,4
5	LW-C CM	84,9	-20	30	0,11	23	LW-FZDZ	79,7	-25	20	0,29
6	LW-C CM	84,9	-10	40	0,1	24	LW-FZDZ	84,9	-15	20	0,35
7	LW-C CM	84,9	-10	35	0,15	25	LW-FZDZ	84,9	-10	20	0,38
8	LW-C CM	84,9	-30	35	0,05	26	LW-FZDZ	84,9	-3,5	20	0,42
9	LW-C CM	84,9	-3,5	30	0,35	27	LW-FZDZ	84,9	-25	20	0,15
10	LW-C IM	40,1	-20	22	1,5	28	LW-FZDZ	84,9	-15	20	0,18
11	LW-C IM	40,1	-10	28	1,2	29	LW-FZDZ	84,9	-10	20	0,2
12	LW-C IM	84,9	-20	23	1,3	30	LW-FZDZ	84,9	-3,5	20	0,21
13	LW-C IM	40,1	-20	42	0,3	31	LW-FZDZ	84,9	-25	110	0,18
14	LW-C IM	84,9	-20	20	1,75	32	LW-FZDZ	84,9	-15	110	0,22
15	LW-C IM	84,9	-10	20	2,25	33	LW-FZDZ	84,9	-10	110	0,23
16	LW-C IM	84,9	-10	20	0,5	34	LW-FZDZ	84,9	-3,5	110	0,26
17	LW-C IM	84,9	-20	31	0,75	35	unimodal	84,9	-10	180	0,25
18	LW-C IM	84,9	0	20	2,5	36	unimodal	84,9	-10	220	0,25

DETECTION

Case	Detection	Case	Detection	Case	Detection	Case	Detection
1	Y	10	Y	19	Ν	28	Y
2	Y	11	Y	20	Y	29	Y
3	Y	12	Y	21	Y	30	Y
4	Ν	13	Y	22	Y	31	Y
5	Y	14	Y	23	Y	32	Y
6	Y	15	Y	24	Y	33	Y
7	Y	16	Y	25	Y	34	Y
8	Y	17	Y	26	Y	35	Y
9	Ν	18	Ν	27	Y	36	Y

False Negatives Analysis

Detection Time

LWC Prediction

Case	LWC	LWC pred	Case	LWC	LWC pred	Case	LWC	LWC pred
[-]	[g/m ³]	[g/m ³]	[-]	[g/m ³]	[g/m ³]	[-]	[g/m ³]	[g/m ³]
1	0,3	0,35	13	0,3	0,46	25	0,38	0,2
2	0,42	0,3	14	1,75	0,5	26	0,42	0,3
3	0,34	0,2	15	2,25	0,5	27	0,15	0,2
4	0,54	-	16	0,5	0,4	28	0,18	0,2
5	0,11	0,2	17	0,75	0,5	29	0,2	0,1
6	0,1	0,1	18	2,5	-	30	0,21	ND
7	0,15	0,1	19	1	-	31	0,18	0,3
8	0,05	ND	20	0,82	0,5	32	0,22	0,2
9	0,35	-	21	0,46	0,4	33	0,23	0,2
10	1,5	0,9	22	0,4	0,3	34	0,26	0,2
11	1,2	0,7	23	0,29	0,4	35	0,25	0,2
12	1,3	0,6	24	0,35	0,2	36	0,25	0,2

June 20-22,

2023

Flight Tests Results

