

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Hybrid Ice Detection System

Development and Validation

Annagrazia Orazzo & Bruno Thillays, SAFRAN AEROSYSTEMS

SAE International Conference on Icing of Aircraft, Engines, and Structures June 20-22, 2023 – Vienna, Austria

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

An overview of Hybrid Detection approach

Direct ice detection

Local detection (ice detector): presence of ice accretion/icing condition.

Hybrid ice detection

Combination of Direct and Indirect Detection.

- Flight safety increase.
- Better availability.
- False alarms reduction.
- Detailed information about the icing encounter.
- Continuous monitoring of A/C performance.
- Pilots better reaction.

Indirect ice detection

<u>Global detection</u>: effects of ice accretion.

SENS4ICE goals

- To define the specifications and needs for Hybrid Detection approach
- To develop Hybrid Ice Detection System (HIDS) demonstrator for FT campaign

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

HIDS development phases

HIDS environment

HIDS Calculator is composed of:

- DLR Indirect Ice Detection System (IIDS)
- HIDS specific functions for hybridization
- Communication functions

HIDS interfaces

Ç

- Aircraft power supply
- Aircraft systems (through FTI)
- Direct Ice Detection Sensors (DIDSs), up to 4
- FTI PC and displays
- Ice Protection Systems

HIDS functions

- Data Communication A/C and DIDSs data collection. HIDS outputs transmission.
- Indirect Ice Detection (DLR)
 - INPUT: needed A/C data. OUTPUT: C_D factor, $\frac{\partial C_D}{\partial t}$, ICE detection, Reliability signal.
- IIDS Initialization

TFW).

To provide IIDS data not available via the A/C FTI (ZFW, ZFCG,

Arbitration

INPUT: Direct detection, Indirect detection, TAT, IPS on/off signal.OUTPUT: Synthetic and complete ice detection signal

Recording

To record all the public data on the network (requested only for SAFIRE ATR42).

Insight on Arbitration function

Aim of Arbitration function: to extract a single, consistent output from Direct and Indirect detections!

Insight on Arbitration function

Aim of Arbitration function: to extract a single, consistent output from Direct and Indirect detections!

HIDS Simulink model

Why SIMULINK?

- 1. Easy prototyping environment.
- 2. The **IIDS** model provided by DLR is a **protected Simulink model**: a compatible execution environment was required.
- Simulink models are supported by dSpace MicroAutobox (hardware chosen for HIDS). dSpace tools allow to convert Simulink HIDS model into a *real-time code* by adding specific libraries Ethernet UDP protocol, chosen for FT data transmission.

dSPACE MAB III and Configuration desk (credit SAFRAN)

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

HIDS validation and laboratory tests

HIDS validation and laboratory tests

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

Embraer Phenom300 - HIDS FT architecture

SAFIRE ATR42 - HIDS FT architecture

SENS4ICE, EU-funded project, Grant Agreement No 824253

HIDS Calculator (on the left), HIDS PC tool (on the right). (credit SAFRAN)

Aircraft data provided by

- SAFIRE FTI (IWG1 format)
- ATR FDAU (ARINC 573 converted into ETH/UDP by ACRA equipment)

Direct Ice Detectors

- FOD (INTA) Ice Accretion Detector
- AMPERA (ONERA) Icing Condition Detector
- LILD (DLR) Ice Accretion Detector
- CM2D (DLR reference probe)

HIDS PC functions (HIDS_ATR_FT tool)

- To translate ACRA and IWG1 frames to S4I IENA format
- ♦ To enable HIDS/IIDS Initialization
- To monitor/display HIDS and DIDSs outputs
- To record all public data on network (backup)

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

Quicklook on HIDS behaviour

Preliminary Flight Test results

The Figure shows an example of PFIDS/IIDS Arbitration output for the FT#4 (25 FEB 2023) of US campaign

- Several Appendix O conditions encounters
- Both Direct and Indirect Ice detection
- HIDS arbitration output delay $\Delta t = 0s$

On going analyses

- Identification of icing condition encounters (IC)
- Evaluation of the average LWC, MVD, SAT, TAS, ALT
- Evaluation of ED103revB IAR and detection time
- Evaluation of IIDS and DIDSs detection time
- Arbitration logic optimization via FT scenario replay

Preliminary Flight Test results

On going analyses

- Focus on one icing encounter
 - LWC = 0.33 g/m3; MVD ~ 29 μm (from DLR μ Physics data) Alt = 9155 ft; SAT = -12°C; TAS = 180 kts
 - Detection times (ref. ED103 revB) ٩
 - $t_{ED103B} = 11s$ • $t_{DIDS} = 10s^*$

• $t_{IIDS} = 60 \, s^*$

Preliminary Flight Test results

On going analyses

- Aircraft de-icing phase
 - $\blacklozenge~$ exit from the cloud $\twoheadrightarrow~$ increase of Alt
 - increase of speed (CAS \geq 250 kts) \rightarrow increase of TAT $> 0^{\circ}$ C
- DIDS ICE signal drops 2 min after the exit from IC
- IIDS ICE signal is maintained during all the de-icing phase
 - Performance degradation due to residual ice (?)

- Context and objectives
- HIDS development phases
- HIDS validation and laboratory tests
- HIDS aircraft flight test architectures
- Preliminary flight test results
- Conclusions and way forwards

Conclusions and ways forward

- HIDS challenging development and testing
 - Large amount of different data to process
 - Strong dependency on the aircraft type and architecture
- Promising Flight Tests results
 - Good system behaviour during FT (communication, IIDS initialization, data recording)
 - Benefits of hybridization already observed
 - Early Direct Detection
 - Continuous monitoring of A/C performance (residual ice)
 - Possible optimization of Ice Protection
 - Further data post-processing needed to enable optimization of HIDS
- Challenges to be addressed
 - HIDS outputs: A tight collaboration with aircraft makers is needed to properly exploit the rich information provided by HIDS.
 - HIDS airworthiness: A new certification approach to be developed in collaboration with certification authorities.

Icing conditions			
Ice detector			
IIDS			
Ice Protection	↓		
			time

Thank you all for attending !

Thanks to all SENS4ICE partners for the fruitful discussions during HIDS development process! ③

Special thanks goes to

- DLR
- Embraer
- SAFIRE
- ♦ ATR
- ANAC & EASA
- Leonardo

- Annagrazia Orazzo & Bruno Thillays
- TEL. +33 1 61 34 28 24, +33 1 61 34 14 83
- Email address annagrazia.orazzo@safrangroup.com , bruno.thillays@safrangroup.com
- SAFRAN Aerosystems 61, rue Pierre Curie, 78373 Plaisir Cedex - France

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

SENS4ICE