June 20-22, 2023 Vienna, Austria

International Conference on loing of Aircraft, Engines, and Structures

sae.org/icing

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES

Overview on the meteorological conditions during the SENS4ICE airborne test campaigns

 Olivier Jaron - CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France, Ben C. Bernstein - Leading Edge Atmospherics, LLC, Longmont, Colorado, USA Tina Jurkat-Witschas, Johannes Lucke, German Aerospace Center DLR, Germany
International Conference on Icing of Aircraft, Engines, and Structures – SAE June 20 - 22, 2023, Vienna, Austria

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

And al. :

Carsten Schwarz and Johanna Mayer, German Aerospace Center DLR; Sarah Puginier, Vincent Bourdette, Gaetan Naud and Alexandre Flouttard and Michel Roque, Météo-France Benoit vié, CNRM, Météo-France; Alessandra Zollo, Italian Aerospace Research Center; Aurelien Bourdon, SAFIRE; Frank Kalinka, Benedikt Maerz, Jan Niklas Bogner, Ulrike Oertel, Paul Hennig, Anika Tschunt, Marcus Bauer and Berthold Lescher, Deutscher Wetterdienst

The SENS4ICE team

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

Overview and Outline

- Two airborne measurement campaigns.
- Similar, but different places / aircrafts / seasons / probabilities to observe icing...
- All partners involved for a same target : Capture App. O & (some) App. C conditions
- A lot of preparation for planning, flight strategies, forecast briefing (EU dry-run organized one year before the campaign), exchange of know-how...
- All hands on deck during the campaigns
- Big effort to prepare data and to present first preliminary results (<2 months after EU campain)

<u>Plan</u>

1) Weather Forecasting tools combined with research aircraft capacities

2) Example cases

3) Preliminary summary of observed conditions during US and EU campaigns

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Weather Forecasting tools combined with research aircraft capacities

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

Tools Used In the U.S. Campaign

- Synoptic Weather Patterns
- Models: NAM, HRRR
 - T, RH, microphysics Maps, forecast profiles
- Satellite: GOES-16
 - IR, VIS, Near-IR (CH5), SW-IR (CH6)
 - Combinations: CH6/5, CH7-14, Night Microphysics
- Radar: NEXRAD & mosaics
 - Maps of reflectivity
- Surface Observations
- Pilot Reports
- Balloon-borne soundings
- Webcams

Examples from 10 Mar event

.6 .65 .7 .75 .8 .85 .9 .95 1 1.05 1.1 1.15

Tools from the European Campaign

- Models: ARPEGE (MF), AROME (MF), IFS (ECMWF)
 - T, RH, microphysics maps, forecast soundings
 - Ensembles (PEARP, EPS)
 - Synoptic charts
- Satellite: Meteosat-10 (MSG-3, MSG-4 in maintenance)
 - IR, VIS, Day-Night Microphysics, Cloud Top Pressure, Icing clouds
- Radar: ARAMIS, OPERA
 - Maps of reflectivity, cross section
- Icing dedicated products :
 - ADWICE (DWD), CIRA satellite, SIGMA, ICEP
- **PIREPs**
- Soundings

Examples are from 24 Mar

08/02/2019

Role of the weather forecaster

2-5 days before a possible flight

 Probability of icing clouds in a temperature range from 0°C to -20°C in areas where A/C can fly

1 day before

- Confirmation / adjustment of the previous forecast
- Have icing conditions improved or worsened compared to previous forecasts?
- Has the timing changed?
- Chances for SLD?
- Support the team to generate a flight plan

<u>D-Day</u>

- Last observation (Satellite,..): GO / NO GO
- During the flight: flight guidance

Aircrafts to probe icing conditions

	US Campaign	EUR Campaign
Aircraft	Embraer Phenom 300	@SAFIRE ATR 42
Location	Alton / St. Louis Regional Airport (KALN)	Francazal airport (LFBF)
Capabilities	Max Alt. : FL 450 Heated leading edges	Max Alt : FL 200 Deicing boots
Project rules / limitation	Short encounters: ~3-min (equiv. time) Sample during aeronautical day	If severe conditions forecasted: T>0°C SFC-8000 ft., Duration of encounters : 30s max. Flight during aeronautical day
Max. flight time	4 h (instrumented)	5h

Areas, contraints and prior notice

	US Campaign	EUR Campaign						
Period	Winter 2023 (End of Feb, begin of Mar)	Spring 2023 (April)						
Area and ATC	SingerCK Fargo Brainer Dulutb Besseriner Marguette Stuti 245. Marie	London Front Partis Natros Partis Natros Partis Natros Partis Natros Partis Natros Natros Unitario Partis Natros Natros Unitario Partis Natros Natros Unitario Natros Natros Natros Natros						
	300 nm radius preferred Could extend with remote landing All public airspace	3 CER* in France Airways within a radius of 500 nm						
Prior notice	None required	CER : limited availability: D+1 (before 12h), Friday for Monday Airways : 2-4H (D+1 if refuel)						
SENS4ICE, EU-funded project, Grant Agreement No 824253								

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Example cases

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

EU Campaign - Flight #as230021 - 26 April

US Campaign - Flight #1475 - Wisconsin FZDZ

F1475-1 - 2023-02-23

(DED)

CT11 - -

Glaciated

(blue)

13:45

1333Z

3:15

FZDZ (red)

RA

-10

-15

+ FKS

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Preliminary summary of observed conditions during US and EU campaigns

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

Overview of the US Campaign

- **15 flights** conducted (including ferry and check flights).
- **25 flight hours**, targeting natural icing conditions. SLD, in particular.
- 55 encounters* of 2-7 min duration
- Total of ~4h in icing conditions

* From Embraer reports

Ground tracks from Flightradar24

Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

SENS4ICE, EU-funded project, Grant Agreement No 8

Գ 16 08/02/2019

Data used for evaluation and **Classification of icing and SLD encounters**

DATA provided by Johannes Lucke and Tina Jurkat-Witschas (DLR), Lyle Lilly and Dan Bouley (SEA) and the EMB and SAFIRE team **EVALUATION : Johannes Lucke, Deniz Menekay and Simon Kirschler**

- LWC : from SEA Ice Crystal Detector (ICD; US) / from CCP and Nevzrorov (EU),
- Droplets distribution and Ice Crystals detection:
 - **Dmax** : CCP Volume diameter, 99th percentile
 - **N Crystals:** CCP Number Concentration of aspherical particles with area above 0,0225mm²
- 15s for US / 30s for EU rolling mean (different TAS)
- Phase: CIP measurements to differentiate Number of particles tends to be underestimated => Preliminary results, future works !
 - Jurkat-Witschas T. et al., SAE, 2023
 - Lucke et al., SAE, 2023

Icing:

- LWC > 0.025 g/m³
- Ambient temperature (SAT) <0°C

SLD:

- LWC > 0.025 g/m3
- Large ice crystal < 1/L (Cober & Isaac 2012).
- VD99 30s > 100 micrometer.
- SLD concentration >10x ice particle concentration
- SLD concentration > 0.1/L
- The Nevzorov LWC > 60% Nevzorov 8mm cone TWC measurement
- Ambient temperature (SAT) <0°C

Classification of icing condition

Overview of measurements for the US Campaign

F1477-1

Flight	DAY	DURATION (hours)	HOURS
F1475-1	20230223	2,8	11:43-14:29
F1475-2	20230223	1,2	17:18-18:33
F1476	20230225	2,1	11:38-13:43
F1476	20230225	1,7	15:54-17:33
F1477-1	20230301	2,2	11:38-13:48
F1477-2	20230301	1,6	16:56-18:34
F1478	20230306	2,5	11:46-14:18
F1481	20230309	1,2	12:01-13:13
F1482	20230310	2,3	12:08-14:24
F1482	20230310	1	16:39-17:40

SENS4ICE, EU-funded project, Grant Agreement No 82

Preliminary results

The method used can modify these results

°° 17 08/02/2019

Characterize in-Situ measurements for the US Campaign

Supercooled Liquid Phase	Positive Temperature	Mixed Phase	Glaciated	Clear
LWC > 0.01 g/m ³	LWC > 0.01 g/m ³	LWC > 0.01 g/m ³	LWC < 0.01 g/m ³	LWC < 0.01 g/m ³
SAT < 0°C	SAT > 0°C	SAT < 0°C	SAT < 0°C	
LAS < 1 / L	LAS < 1 / L	LAS > 1 / L	LAS > 1 / L	LAS < 1 / L
Small Drops	Small Drops			
(SM DP Icing)	(SM DP POS)			
Dmax<100um	Dmax<100um			
Freezing Drizzle	Drizzle			
(FZDZ)	(DZ)	(MIXED)	(Glac)	(Clear)
Dmax<500um	Dmax<500um			
Freezing Rain	Rain			
(FZRA)	(RA)			
Dmax>500um	Dmax>500um			

LAS : Large ASpherical ice particles

Adapted from Bernstein et al. (2021), AMS, Overview of NRC Convair-580 In-situ Flight Observations Made During ICICLE And using data analysed from DLR

Characterize in-Situ measurements for the US Campaign

Conditions Flight by Flight (US)

Flightnum	ID	SM DP POS	DZ	RA	SM DP Icing	FZDZ	FZRA	MIXED	Glac	Clear	Unknown	All
F1475-1	1	0,52 %	0,04 %	0,00 %	0,69 %	0,18 %	0,00 %	0,20 %	0,96 %	11,19 %	0,00 %	14,87 %
F1475-2	2	0,08 %	0,00 %	0,00 %	1,52 %	0,00 %	0,00 %	0,36 %	0,00 %	4,77 %	0,00 %	6,72 %
F1476	3	0,03 %	0,00 %	0,00 %	1,01 %	0,65 %	0,00 %	0,33 %	0,00 %	8,30 %	0,27 %	11,19 %
F1476	4	0,01 %	0,00 %	0,00 %	1,00 %	0,00 %	0,00 %	0,00 %	0,00 %	7,94 %	0,00 %	8,95 %
F1477-1	5	0,15 %	0,00 %	0,00 %	1,97 %	0,09 %	0,00 %	0,70 %	0,50 %	7,95 %	0,02 %	11,61 %
F1477-2	6	0,01 %	0,00 %	0,00 %	0,89 %	0,38 %	0,00 %	0,03 %	0,00 %	7,36 %	0,00 %	8,79 %
F1478	7	0,04 %	0,00 %	0,00 %	3,50 %	0,14 %	0,00 %	0,30 %	2,82 %	6,68 %	0,00 %	13,60 %
F1481	8	0,75 %	0,03 %	0,00 %	1,16 %	0,05 %	0,01 %	0,10 %	0,73 %	3,51 %	0,00 %	6,54 %
F1482	9	0,04 %	0,00 %	0,00 %	3,20 %	0,00 %	0,00 %	2,24 %	0,01 %	6,43 %	0,00 %	12,21 %
F1482	10	0,01 %	0,00 %	0,00 %	1,92 %	0,00 %	0,00 %	0,06 %	0,00 %	3,53 %	0,00 %	5,51 %
All		1,63 %	0,08 %	0,00 %	16,85 %	1,50 %	0,01 %	4,32 %	5,01 %	67,66 %	0,29 %	100,00 %

Percentage of each condition across ALL measurements data Ferry flights & cruise time are included.

Overview of the European Campaign

51.5 total flight hours (including EMI test, calibration and test flight)

- **15 measurement flights** were operated (12 in CER)
- Icing conditions encoutered during almost all flights
- Some SLD conditions were detected.
- Flight Data from SAFIRE

Airborne data obtained using the aircraft managed by Safire, the French facility for airborne research, an infrastructure of the French National Center for Scientific Research (CNRS), Météo-France and the French National Center for Space Studies (CNES). Distributed data are processed by SAFIRE.

Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

Overview of the European Campaign

SENSAICE. EU-funded project. Grant Agreement No 82 Preliminary results

The method used can modify these results

08/02/2019 🦞 22

Characterize in-Situ measurements for the EU Campaign

Icing / non icing vs. Altitude

Icing / non icing vs. Temperature

=> Large droplets sometimes appear in medium levels (FL080-160) in spring

=> Clouds with drizzle/rain below were probed when A/C deiced

SENS4ICE, EU-funded project, Grant Agreement No 82

Preliminary results

Conditions flight by flight (EU)

Flightnum	ID	SM DP POS	DZ	RA	SM DP Icing	FZDZ	FZRA	MIXED	Glac	Clear	Unknown	All
as230008	1	0,05 %	0,00 %	0,00 %	0,95 %	0,00 %	0,00 %	0,27 %	0,27 %	2,39 %	0,00 %	3,92 %
as230009	2	0,09 %	0,00 %	0,00 %	2,98 %	0,00 %	0,00 %	2,75 %	0,28 %	2,63 %	0,00 %	8,73 %
as230010	3	0,03 %	0,03 %	0,03 %	0,27 %	0,00 %	0,00 %	0,36 %	0,01 %	2,31 %	0,07 %	3,11 %
as230011	4	0,04 %	0,04 %	0,02 %	0,14 %	0,00 %	0,00 %	0,66 %	0,07 %	2,23 %	0,05 %	3,25 %
as230014	5	0,14 %	0,46 %	0,03 %	0,53 %	0,07 %	0,00 %	2,50 %	0,18 %	1,76 %	0,02 %	5,69 %
as230015	6	0,04 %	0,00 %	0,00 %	4,18 %	0,01 %	0,00 %	0,10 %	0,00 %	3,42 %	0,00 %	7,75 %
as230016	7	0,01 %	0,00 %	0,00 %	0,29 %	0,00 %	0,00 %	0,16 %	0,66 %	5,27 %	0,02 %	6,41 %
as230017	8	0,41 %	0,23 %	0,12 %	2,15 %	0,00 %	0,00 %	1,05 %	0,05 %	3,01 %	0,03 %	7,06 %
as230018	9	0,21 %	0,84 %	0,13 %	1,45 %	0,65 %	0,00 %	2,91 %	0,44 %	3,84 %	0,32 %	10,79 %
as230019	10	0,16 %	1,50 %	0,22 %	1,38 %	0,25 %	0,00 %	3,60 %	1,68 %	2,94 %	0,25 %	12,00 %
as230020	11	0,23 %	0,21 %	0,00 %	0,88 %	0,00 %	0,00 %	0,07 %	0,43 %	4,08 %	0,02 %	5,93 %
as230021	12	0,30 %	0,29 %	0,07 %	0,86 %	0,19 %	0,00 %	2,59 %	2,04 %	1,82 %	0,14 %	8,31 %
as230022	13	0,14 %	0,26 %	0,11 %	0,43 %	0,03 %	0,00 %	3,38 %	1,45 %	2,26 %	0,15 %	8,21 %
as230023	14	0,03 %	0,37 %	0,22 %	0,50 %	0,10 %	0,00 %	2,14 %	0,68 %	4,73 %	0,07 %	8,84 %
All		1,88 %	4,23 %	0,96 %	16,98 %	1,32 %	0,00 %	22,54 %	8,25 %	42,68 %	1,15 %	100,00 %

Percentage of each condition across measurements data

(take off and landing are suppressed)

Some ferry phase are included.

Preliminary results

Comparison between the two campaigns

=> EU campaign altitudes ~ 1000m to 2000m higher because of the season & safety requirements => More T>0°C rain/drizzle drops probe during EU camp., due to deicing beneath icing clouds

SENS4ICE, EU-funded project, Grant Agreement No 82

Preliminary results

Comparison between the two campaigns

Overall results

• How were they similar?

- Icing and SLD contions were found many times in both campaigns.
- Almost all flights sampled icing. Frequency enhanced by flight guidance
- Both were very successful !
- How were they different?
 - Different plane, different season/location => different de-icing strategies
- How was this season's icing frequency compared to climatology and expectations?
 - US: Seemed normal.
 - Typical patterns for this time of the year.
 - Good storm track, lots of frontal systems, nice variety of conditions.
 - Best for SLD early in the morning, as usual. Still some events later in the day.
 - Europe: Seemed above normal
 - At the end of the campaign, good west-north-westerly flow, allowing warm advection in SW of France.
 - Significant icing at mid levels (FL100-180) is not unusual at this time of year

The planets must be aligned :-)

Recipe for success :

Aircrafts + Instrument Operators + Forcasters + NATURE ! Which provided icing layers !

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

Visit our website <u>www.sens4ice-project.eu</u> and Linkedin #sens4iceproject