Copyright © by Deutsches Zentrum fuer Luft- und Raumfahrt e.V.

TESTING OF AN INDIRECT ICE DETECTION METHODOLOGY IN THE HORIZON2020 PROJECT SENS4ICE

Christoph Deiler

DLR – German Aerospace Center, Institute of Flight Systems, Braunschweig

Christoph Deiler, DLR, DLRK, September 20th, 2023 | This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 824253

Introduction

- Hazardous effects of ice accumulations caused various accidents in the past despite the availability of countermeasures (anti-ice, deice)
- Resulting effects related to type and location of corresponding ice accretion, which have dependency on, e.g., atmospheric conditions, flight condition, aircraft geometry, ...
- Goal: early detection of ice accretion and icing conditions
 →SENS4ICE Hybrid Ice Detection Approach

Strategic: flight blanning based on new enhanced weather forecast.	<u>Tactical:</u> new nowcasting to enhance situational awareness in avoidance of hazardous icing conditions.
	In situ: new hybrid detection of icing conditions and accretion to trigger IPS and safe exit strategy
	<u>Contingency:</u> new detection of reduction in aircraft flight envelope (loss of control prevention)

Indirect Ice Detection System (IIDS)

- software solution for reliable, cost effective and retrofittable ice detection
- providing necessary information to maintain safe flight conditions
- potential enabler for more selective activation of anti-ice systems with reduced energy consumption

- "Expectable Variation":
 - production tolerances
 - aircraft skin repairs
 - aircraft skin contamination, e.g., dirt
 - engine aging causing reduced efficiency
 - or engine contamination
- "Variation to be detected ":
 - \rightarrow subject to the indirect ice detection approach

Performance Variation of SENS4ICE Flight Test Bench Embraer Phenom 300 Prototype

Big data analysis using fundamental engineering knowledge (**smart data approach**):

- operational flights similar to SENS4ICE target application
- only standard instrumentation as source of information

Experimental prototype with embedded additional flight test instrumentation and features not representing any certified Phenom 300 aircraft model!

→ monitoring of aircraft flight performance using the regular sensors possible
 → level of precision allows detection of performance degradation induced by ice accretion at a very early stage

Performance-Based (Indirect) Ice Detection Abnormal Aircraft Performance Monitoring:

Total Energy:

5

$$E_{tot} = \frac{1}{2} \cdot m_{AC} \cdot V_{TAS}^2 + m_{AC} \cdot g \cdot H$$

Power Imbalance:

$$\dot{E}_{tot} = V_{TAS} \cdot \dot{V}_{TAS} \cdot m_{AC} + \frac{1}{2} \cdot V_{TAS}^2 \cdot \dot{m}_{AC} + g \cdot \dot{H} \cdot m_{AC} + g \cdot H \cdot \dot{m}_{AC}$$

Performance variation as equivalent drag coefficient

$$\Delta C_{\widetilde{D}} \approx \frac{\dot{E}_{tot,ref} - \dot{E}_{tot}}{V_{TAS} \cdot \overline{q} \cdot S}$$

with $\dot{E}_{tot,ref}$ subject to further corrections

Performance IIDS HIDS Reference Data Base Aircraft Detection Indirect Ice Hybrid Ice Flight Data Algorithm Detection Detection Arbitration Algorithm Sensor Measurements & **Results From Direct Ice** Detection

- Core part of the hybrid ice detection system (HIDS)
- Integration of DLR's IIDS in HIDS implementation made by SAFRAN Aerosystems
- IIDS for a specific aircraft type, which concern
 - the flight data preprocessing: information about the current aircraft state
 - the flight performance reference data base
 - the indirect ice detection threshold and confirmation times
 - the detection reliability conditions

Flight Performance Reference Data Base

- Reference data required to compute the reference power imbalance $\dot{E}_{tot,ref}$
- Must include the aircraft performance
 - e.g., via multi-dimensional model for $\dot{E}_{tot,ref}$ (e.g. table)
 - aerodynamic reference and engine thrust model
 → used for SENS4ICE
- Reference could be based on flight data or only preliminary design data for new aircraft
- For SENS4ICE flight test:
 - Specific adaption of reference required due to significant aircraft modifications

lift coefficient C_I

Detection Threshold and Confirmation Time

Abnormal flight performance

- airframe ice accretion persistent,
- degradation constantly increasing
 → indirect ice detection
- Detection threshold on the equivalent drag coefficient
 → significant degradation and critical for safe flight
 → earlier if possible
- Detection based on relative value with based zero-lift drag coefficient
 → nominal case: relative value 100% with additional drag coefficient is zero
- Confirmation time for detection required to prevent false alarms by measured performance fluctuations
- Weighted moving averages used for filtering and confirmation

Example Test Flight – North America Campaign

- Flight from Chicago O'Hare to Alton / St. Louis on 23rd Feb. 2023
- Two icing encounters as SENS4ICE test points (App. C):
- Test Procedure:
 - Dive into icing clouds with clean aircraft (free of any ice)
 - Icing encounter with ice formation on unprotected surfaces
 - Climb out of cloud and de-icing of airframe with higher speed in warmer air
- for IIDS testing during SENS4ICE and HIDS interaction mainly airframe ice accretion with a detectable performance degradation is required!
- successful test if IIDS reliably detects ice formation / performance degradation

Typical Icing Encounter during SENS4ICE North America Campaign

Time-lapse video from cockpit camera in Phenom 300 prototype test aircraft

Example encounter relatively <u>fast</u> and <u>reliable</u> detection

Christoph Deiler, DLR, DLRK, September 20th, 2023 | This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 824253

Aerodynamic Degradation due to Icing Example Flight (23rd Feb. 2023)

 Engine thrust model shows deficiencies for high fan speeds at low temperatures in lower altitudes (neg. temperature offsets to standard atmosphere)

Thrust model adjustment Example Flight (23rd Feb. 2023)

- Model adjustment reduces questionable drag estimation
- Advantage of split implementation in SENS4ICE with modified aerodynamics for flight test implementation and engine thrust model

Example encounter – Adjusted Engine Thrust Model

Summary: Indirect Ice Detection System in SENS4ICE

- Indirect ice detection methodology based on an aircraft performance degradation → one key to success for SENS4ICE
- several advantages compared to direct detection (mainly complementary), e.g.,
 - retrofit capabilities (simple software solution)
 - highly beneficial information about the remaining aircraft capabilities \rightarrow safe exit strategy
- IIDS provides redundancy for ice detection when hybridized
 → reduced risk for common cause failures
- Validation of IIDS during SENS4ICE US Campaign in icing conditions
- Novel ice detection and chance for treatment of icing hazard in aviation including small-size vehicles of general aviation or drones
- Next step: Comprehensive evaluation of SENS4ICE flight test campaigns regarding IIDS performance

Impressum

16

Topic: Testing of an Indirect Ice Detection Methodology in the Horizon2020 Project SENS4ICE

Date: September 20th, 2023

Series: DLRK 2023, Stuttgart, Germany

Author: Christoph Deiler (<u>christoph.deiler@dlr.de</u>)

Institute: Institute of Flight Systems

Credits: iced wing: credit SAFIRE; EMB Phenom 300 prototype: credit Embraer; remaining pictures "DLR (CC BY-NC-ND 3.0)"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 824253

www.sens4ice-project.eu

