INTERNATIONAL®

June 20-22, 2023 Vienna, Austria

## **International Conference on loing** of Aircraft, Engines, and Structures

sae.org/icing



## SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Overview of cloud microphysical measurements during the SENS4ICE airborne test campaigns: contrasting icing frequencies from climatological data to first results from airborne observations

SAE International Conference on Icing

Tina Jurkat-Witschas (DLR) ET AL 20-22 June 2023

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253



## ET AL – "no (wo)man is an island"



... Johannes Lucke, Carsten Schwarz, Christoph Deiler, Falk Sachs, Deniz Menekay, Simon Kirschler, Johanna Mayer, Christiane Voigt - Deutsches Zentrum für Luft- und Raumfahrt

Alessandra Zollo - CIRA

Frank Kalinka – Deutscher Wetterdienst

Emilia Sanchez, Christian Pagé - CERFACS

Olivier Jaron and Benoit Vie – Météo France

Aurelien Bourdon and the SAFIRE crew-SAFIRE

Ben Bernstein – Leading Edge Atmosphere

Daniel Da Silva Martin, Luiz Antonio Algodoal Vieira, Carlos Roberta Hardt Lucia Silveira, Rogerio Pereira De Lima - EMB

Lyle Lilie and Dan Bouley - Science Engineering Associates SEA

and the SENS4ICE team

## **Overview**

- Motivation
- Assessment of Climatological Means of Icing Conditions for targeted time and altitude of the SENS4ICE campaigns
- Overview on microphysical reference instrumentation
- First preliminary data of icing conditions during the SENS4ICE US campaign and the SENS4ICE EU Campaign



## **Motivation**

- Validation of new sensor technologies tested in real icing conditions on aircraft require robust characterization of LWC, MVD, particle size, number and phase
   measurements with well known, established "reference sensors"
- Generally data on atmospheric conditions that allow the formation of SLD sampled in Europe are still rare
- Atmospheric conditions that lead to **aircraft icing at higher altitudes** are rare
- Numerical weather prediction models and icing forecasts need defined, high resolution measurements to validated their products
- Icing climatologies (based on NWP or measurement data) help to assess the best location for aircraft campaigns to test sensors in relevant conditions





## Assessment of Climatological Means of Icing Conditions for targeted time and altitude of the SENS4ICE measurements

¢

METEO

FRANCE















## **Climatology of icing (SLD) in the US**





From study by Bernstein et al., 2007

SENS4ICE, EU-funded project, Grant Agreement No 824253

 Product for SLD icing potential derived from 15 years of data (1997-2001) using CIP-sonde icing algorithm, combining coincident profiles of + weather balloons

- + surface observations
- SLD potential was derived from counting sounding with values above 0.15, indicating that there is a small chance of SLD
- ♦ Here shown full column for the month of February
  → months of the campaign
- Regions with enhanced SLD are the Northwestern coastal region and from the South Central U.S. through the Southern Great Lakes and Mid-Atlantic
- Further requirements: areas of flat terrain and low air traffic choose the operations base for the Phenom 300



## **Climatology of icing (incl. SLD) in Europe**

- Complimentary data sets were used to assess the question on the best location for stationing SAFIRE'S ATR-42 in April in Europe.
- Three more recent data sets:
- 1. ) ADWICE ICON (Deutscher Wetterdienst)
- 2. ) ICEP ERA5 (CERFACS)
- 3. ) MSG Satellite retrieval (CIRA)



Important safety requirements for SLD encounters (severe icing) of the aircraft had to be considered

- 8000ft of min. altitude
- warm air layer (T> 0°C) below
- no air traffic or complex terrain below

in order to allow the aircraft to deice before continuation of the flight.

These requirements were included in the climatological assessment.



## **Icing frequencies from ADWICE (DWD)**







- ADWICE (Advanced Diagnosis and Warning System for Aircraft lcing Environments) reforecasts from 2015 till 2020
- ICON model with a resolution of 0.25° x 0.25°
- total of 16950 h of data
- hourly resolution, 4 times daily revised on 32 pressure levels

Shown here: geographical distribution of the mean frequency of icing in April

Moderate and severe icing is most frequently indicated above the North Atlantic (ground to 350hPa)

For the higher levels (750-350hPa), Southern European countries suggest higher frequencies of icing (Atlantic and Mediterranean Sea)

## **Icing frequencies from ADWICE (DWD)**



#### Provided by Frank Kalinka



- Meridional cross sections of all icing conditions from long 15°W to 35°E for April
- Northern European countries experience icing at lower altitudes/higher pressures (up to 800hPa)
- Southern European countries show enhanced frequencies up to 400hPa (45-55%)

- Severe icing is just a subset of the all icing conditions with a rather low frequency (2%)
- ADWICE estimates these conditions up to 6000 hPa at southern European countries

## **Icing frequencies from ICEP (CERFACS)**



Provided by Chistian Pagé





- Icing index from Météo France's ICE Potential forecast index (ICEP)
- computed from relative humidity (RHw) and temperature (T) on different atmospheric pressure levels.
- Degree of severity from 0 to 10
- A high icing index (> =8) has a greater potential of severe icing as indicated by ICEP
- In contrast to SIGMA, ICEP does not use satellite, radar or other observational data.
- The data set comprises more than 40 years of ERA-5 data with a resolution of 0.5° on 20 vertical levels
- Annual variability shows probability of icing on the order of ~5% between 2 and 4 km in April



## Icing frequencies from MSG retrieval (CIRA)







Provided by Alessandra Zollo, CIRA

- Satellite images and microphysical properties derived from Meteosat Second Generation (MSG) were used to infer severe icing frequencies
- Algorithm developed by CIRA (Zollo et al., this session)
- Spatial and temporal resolution of 3 km and 15 min
- April data from two years 2019 and 2020 are here combined
- Minimum and maximum altitude estimate for indication of severe icing are shown
- Southern European Countries indicate enhanced frequencies (up to 7%)
- Icing may reach up to 30000ft



## **Summary on climatologies**



- Although icing frequencies were based on different data and evaluation methods with a large spread in their probability of occurrence, the pattern in each analysis suggests enhanced indicated icing frequencies in April in Southern France, Northern Spain and the Mediterranean Sea.
- Toulouse was chosen as the base for operation combing occurrence frequencies and safety requirements in an optimal way





SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

### **Overview on microphysical reference instrumentation**



SENS4ICE, EU-funded project, Grant Agreement No 824253

## **Overview SENS4ICE Flight Campaigns**

- Total flight time: 75h
- SENS4ICE-US: North America, base Alton, Illinois
  - February/March 2023
  - Embraer Phenom 300 operated by Embraer
  - 15 flights
  - 25 flight hours

Reference instruments operated by EMB and SEA

- SENS4ICE-EU: Europe, base Toulouse
  - April 2023
  - French ATR 42 environmental research aircraft of Safire
  - 15 flights
  - **51.5** flight hours



Reference instruments operated by DLR and Safire

SENS4ICE, EU-funded project, Grant Agreement No 824253

Embraer Phenom 300



Copyright © Embraer

SAFIRE ATR 42



Copyright © DLR

22/06/2023

## **Reference instrumentation during SENS4ICE-US**



#### CCP and ice crystal detector on Phenom 300



CCP was used as reference instrument also for SENS4ICE wind tunnel tests (Lucke et al., 2022) to ensure consistent data evaluation

| Instrument                          | Measured<br>parameter         | Range                    | Reference                           |
|-------------------------------------|-------------------------------|--------------------------|-------------------------------------|
| Ice Crystal<br>Detector             | LWC and TWC                   | 0.2 –5 g m <sup>-3</sup> | Lilie, et al., 2021                 |
| Cloud<br>Combination<br>Probe (CCP) | Cloud droplet number and size | 2 – 960 µm               | See also Lucke et<br>al., 2022, AMT |



## **Reference instrumentation during SENS4ICE-EU**



Instruments for measurements of microphysical properties comprise :

- Particle size distribution: CCP and PIP 2 -6400 µm
- ♦ LWC, TWC : Nevzorov 0.03 -3 g m<sup>-3</sup>
- Particle shape and information on phase : HSI (High Speed Imager) and BCPD (Backscatter cloud probe)
- Icing detection: Robust Probe (Safire)
- Aerosol number and size :UHSAS (Safire)

## **Reference instrumentation during SENS4ICE-EU**



Ice accretion on reference sensors observed during test flight (© DLR)

| Instrument                                                | Measured<br>parameter                                      | Range                     | Reference                                    |
|-----------------------------------------------------------|------------------------------------------------------------|---------------------------|----------------------------------------------|
| Cloud Combination<br>Probe (CCP)                          | Cloud droplet number and size                              | 2 – 960 µm                | Lucke et al., 2022                           |
| Precipitation Imaging<br>Probe (PIP)                      | Cloud droplet and ice<br>crystal number number<br>and size | 100-6400 µm               | De La Torre Castro, et<br>al., 2023          |
| High Speed Imager (HSI)                                   | Droplet and Ice particle size and complexity               | 2-2000 µm                 | Esposito, et al., 2019                       |
| Nevzorov Probe                                            | LWC and TWC                                                | 0.03 –3 g m <sup>-3</sup> | Korolev, et al., 1998<br>Lucke, et al., 2022 |
| Backscatter Cloud<br>Probe with Polarization<br>Detection | Droplet and ice crystal<br>size and asphericity<br>(phase) | 2- 42 μm                  | Lucke et al., 2023                           |





### **Data evaluation**

provided by Johannes Lucke and Deniz Menekay



- Optical array probe measurements from the CIP are used to provide
  - particle size distribution (in combination with CDP)
  - shape analysis (differentiate ice particles from droplets)
- Filter for 3 kinds of particles: SLD, small droplets, ice crystals
- The filters are not perfect: Number of detected particles of each category tends to be underestimated → future work!
- Some ambiguities (especially between out-of-focus ice crystals and SLD) are possible
- Further corrections: Shattering correction, out-of-focus correction, all-in method, stuck-bit and air speed correction



CIP Grey scale images 15 µm resolution 75% greyscale level



<sub>ີ</sub> 18

## **Classification of icing and SLD encounters**

provided by Johannes Lucke and Deniz Menekay

SLD: LWC > 0.025 g m<sup>-3</sup> Large ice crystal > 1 L<sup>-1</sup> (Cober & Isaac 2012)  $\rightarrow$  sample out ice crystals The LWC SLD > 1% of total LWC (Cober & Isaac 2012)  $\rightarrow$  ensure significant fraction of LWC SLD concentration >10 times ice particle concentration  $\rightarrow$  avoid mixed phase SLD concentration > 100 m<sup>-3</sup> ~ 0.0001 L<sup>-1</sup>  $\rightarrow$  ensure good statistics The Nevzorov LWC > 60% Nevzorov TWC measurement  $\rightarrow$  consider size range of Hotwire probe Ambient temperature (SAT) <0°C

<u>Icing:</u> LWC > 0.025 g m<sup>-3</sup> Ambient temperature (SAT) <0°C



## **Comparison of LWC from Nevzorov and CCP**





SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

First preliminary data of microphysical cloud properties during the SENS4ICE-US and the SENS4ICE-EU Campaigns



SENS4ICE, EU-funded project, Grant Agreement No 824253

# Overview of measurements during SENS4ICE-US



Geographic distribution of supercooled water encounters (grey areas== no clouds)

| No | Date         | Flight duration [hrs] | Comment        |
|----|--------------|-----------------------|----------------|
| 1  | 22 FEB       | 0:39                  | Check flight   |
| 2  | 23 FEB       | 2:45                  | Appendix O     |
| 3  | 23 FEB       | 1:12                  | Appendix C     |
| 4  | 25 FEB Instr | 2:03                  | Appendix O     |
| 5  | 25 Fr "Ume   | nte                   | Appendix C     |
| 6  | 01 MAR       | Flight Worked         | Appendix O     |
| 7  | 01 MAR       | Sints!! Qurin         | dix O          |
| 8  | 06 MAR       | 1:07                  | endix C        |
| 9  | 06 MAR       | -                     | y Air          |
| 10 | 08 MAR       | 2:21                  | Appendix O     |
| 11 | 08 MAR       | 0:40                  | Return to base |
| 12 | 08 MAR       | -                     | Check flight   |
| 13 | 09 MAR       | 1:23                  | Appendix C     |
| 14 | 10 MAR       | 2:15                  | Appendix O     |
| 15 | 10 MAR       | 1:08                  | Appendix C     |



# Overview of measurements during SENS4ICE-US



Geographic distribution of supercooled water encounters (grey areas== no clouds)

Temperature profile of LWC (ICD) of 8 flights during the SENS4ICE-US campaign



 $\rightarrow$  See also: Jaron, Bernstein et al., this session

## **Selected case from SENS4ICE-US**

- Flight on 23 Feb 2023
- Good agreement of ICD and CCP+CIP LWC  $\rightarrow$  gives confidence in the data
- ♦ SLD present (< 0.1 g m<sup>-3</sup>) but small droplets prevalent
- found SLD MVD (D> 100 μm) reach up to 250 μm
- Further data evaluation needed



°° 24

- 100

Static T / ° C

+ LWC static

-20

-40

6000

5000

4000

3000

### **Overview of measurements during SENS4ICE-EU**





Track source : <u>https://safireplus.aeris-data.fr/data-access</u>

### **Overview of SENS4ICE-EU microphysical measurements**



**%** 26

## **Selected case from SENS4ICE-EU: OF09**

L 140 (595 hPa): Icing Intensity

Master thesis **Deniz Menekay** 



## Selected case from SENS4ICE-EU: 0F09

Master thesis Deniz Menekay



## **Comparison of ADWICE climatological data to first results (altitude range) from airborne observations**



First preliminary (!) comparison of SENS4ICE-EU icing occurrence to meridional cross section from ADWICE climatology looks promising !! ③

**Preliminary data** 

SEN

20-22/06/2023 **°° 29** 

## **Summary**

- Two successful campaigns were conducted with a large variability of icing conditions
- $\rightarrow$  group effort of aircraft and instrument operators as well as forecast teams!
- Comprehensive microphysical data set was acquired
- NEW: icing conditions in altitude range between 2 and 5 km were sampled at high frequencies
- Will be made available for the community for model validation and improvement of satellite retrieval after further refined evaluation and sensitivity studies
- Data analysis is in an early stage and ongoing :
  - ice vs liquid classification needs sensitivity study
  - comparison of two aircraft campaigns: contrasting winter and spring 2023 (US and EU)
  - process study on cloud evolution
  - comparison to other data sets like ICICLE etc.





SENS4ICE, EU-funded project, Grant Agreement No 824253







This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

Airborne data was obtained using the aircraft managed by Safire, the French facility for airborne research, an infrastructure of the French National Center for Scientific Research (CNRS), Météo-France and the French National Center for Space Studies (CNES).

Contact : Tina.Jurkat@dlr.de

SENS4ICE

Visit our website <u>www.sens4ice-project.eu</u> and Linkedin #sens4iceproject