

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Meteorological conditions and microphysical properties that lead to aircraft icing as observed during the SENS4ICE campaigns

J. Lucke, T. Jurkat-Witschas, D. Menekay, C. Schwarz, C. Deiler, S. Kirschler, R. Heller, J. Mayer, C. Voigt, A. Bourdon, B. Vie, O. Jaron, F. Kalinka, B. Bernstein, D. Martins da Silva, L. Algodoal Vieira, C. Sliveira, R.P. de Lima, L. Lilie

Stuttgart, Germany – September 20, 2023

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

Meteorological conditions during SENS4ICE

Previously we heard:

- Overview of the SENS4ICE project goals
- The indirect ice detection approach

Now:

- Meteorological conditions that were encountered during SENS4ICE

 Data evaluation methodology
- Comparison between the American and the European data set

© DLR, with SAFIRE permission

Formation of SLD icing conditions

Two types of SLD conditions are differentiated:

1. Freezing Drizzle (FZDZ)

2. Freezing Rain (FZRA)

Freezing Drizzle and Freezing Rain

Freezing Drizzle:

- Drop diameters between 100 500 µm
- Low CCN and INP concentrations

 \rightarrow Often above stable layer

Freezing Rain:

- Drop diameters larger than 500
- Occurs at very low altitudes
 - →not targeted during SENS4ICE

Freezing Drizzle distributions

Three types of distributions

• Size distributions

Mass distributions

Cumulative mass distributions

 \rightarrow FZDZ conditions are often bimodal

• Rulemakings for flight in FZDZ are in Appendix O to part 25 of European and American aviation regulations.

 \rightarrow FZDZ conditions are called Appendix O conditons.

• Maximum LWCs are defined in envelopes \rightarrow Used to certify aircraft

SENS4ICE flight campaigns

American flight campaign:

- Embraer Phenom-300
- 25 flight hours
- February March 2023
- Based out of Alton, Illinois

European flight campaign:

- SAFIRE ATR-42
- 50 flight hours
- April 2023
- Based out of Toulouse, France

Reference instrumentation

- Both research aircraft were equipped with established airborne instruments
 → Reference instrumentation
- DLR characterizes the icing atmosphere from these measurements
- Data set needed by the sensor developers to verify measurements

Phenom-300

SAFIRE-ATR 42

Hotwire instruments:

LWC

Optical instruments:

Particle size distributions

Other instruments carried:

SAFIRE-CDP, SAFIRE-CIP, SAFIRE-UHSAS, SAFIRE-Robust, SAFIRE-GERBER, DLR-PIP, DLR-BCPD, DLR-HSI

Data evaluation

Optical array probe measurements from the CIP are used to differentiate particles

We sort into 3 categories:

Challenges in recognizing SLD in images

Out of focus particles:

- Many of the imaged particles are not perfectly in focus.
- Trade off: Removal of out of focus images reduces statistics, but may be necessary to avoid false detections.
- Accurately detecting only SLDs is challenging

Challenges of LWC measurements

- SLD sensors splash on the LWC instruments.
- Ice and Liquid water needs to be differentiated.

Consistency of data

- LWC can be derived from two data sources
 - → LWC instruments
 - → Optical instruments (Large uncertainty!)
- Good agreement between optical LWC and hotwire TWC
 - \rightarrow Sorting works accurately.
- Data evaluation strategy is appropriate

Altitude of icing conditions during the US campaign

- Icing conditions were encountered between 500 and 3000 m, with a maximum around 1500 m
- Appendix O conditions were encountered between 1000 and 3000 m

Temperature distribution of Appendix C and O conditions

- Appendix O conditions were encountered from -12°C upwards.
- The median liquid water content in Appendix C conditions decreases sharply at around -13°C.
- Appendix C LWCs are larger than Appendix O LWCs

LWC distribution of Appendix C and O conditions

- Appendix C conditions frequently reached LWCs of 0.8 g/m³
- Appendix O conditions peaked around 0.3 g/m³, but in few cases reached up to 0.9 g/m^3 SENS4ICE, EU-funded project, Grant Agreement No 824253

Characteristics of Appendix O conditions during the US campaign

- LWC in SLD reached up to approximately 0.1 g/m³
- Low overall percentage of LWC in SLD

Altitude of icing conditions during the EU campaign

- Atypical season (chosen due to safety considerations)
- Icing conditions encountered at higher altitude than during the American campaign.

Icing conditions encountered during the SENS4ICE campaign

- Many Appendix C conditions encountered
- Appendix C conditions were often mixed-phase clouds with a significant amount of number particles.

Observations EU flight campaign

- Lower overall LWCs than during the American campaign
- Clouds were patchier, encounters were shorter
- Low LWC beyond -15°C, as in the US campaign.

Characteristics of Appendix O conditions during the EU campaign

- LWC in SLDs relatively often between 0.025 and 0.06 g/m³
- High overall percentage of LWC in SLD

Conclusions (1)

- Icing conditions from two flight campaigns were evaluated.
- The data evaluation procedure of the optical instruments was confirmed by comparison to LWC measurements of a hotwire probe.
- Beyond -15°C the LWC observed in icing conditions (both Appendix C and Appendix O) decreases markedly.
- Appendix O conditions were encountered also in the spring season at relatively high altitudes.

Conclusions (2)

Observations from the American and the European campaing differ:

Parameter	Observation
Altitude of icing conditions	Higher during the European campaign
LWC	Higher during the American campaign
SLD LWC	Higher during the European campaign
Appendix O MVD	Higher during the European campaign

Imprint

Topic:	Meteorological conditions and microphysical properties that lead to aircraft icing as observed during the SENS4ICE campaigns
Date:	2023-09-21
Author:	Johannes Lucke
Institution:	Institute for Atmospheric Physics, German Aerospace Center, 82234 Weßling.
Image credits:	All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

Visit our website <u>www.sens4ice-project.eu</u> and Linkedin #sens4iceproject