

SENS4ICE

SENSORS AND CERTIFIABLE HYBRID ARCHITECTURES FOR SAFER AVIATION IN ICING ENVIRONMENT

Supercooled Large Droplet (SLD) Icing Wind Tunnel Tests Results FINAL DISSEMINATION EVENT OF SENSAICE PROJECT

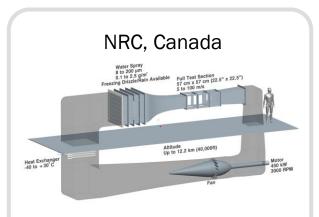
El Hassan Ridouane, Collins Aerospace

Directorate General for Research and Innovation, Brussels, Belgium – 29 November 2023

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253

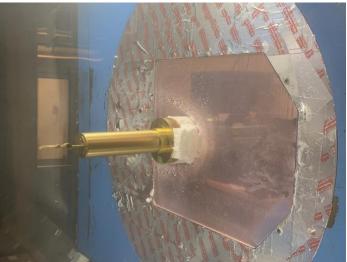
Icing Wind Tunnel Activities in SENS4ICE

- Sensor Interface Control Document (ICD) complete
- Icing Wind Tunnel (IWT) facilities upgrade for SLD conditions complete
- Test matrix developed for each IWT facility
- Standard test procedure developed
- Hardware shipped and installed in IWT facilities
- Tests performed
- Data analyzed and reported for technology evaluation


Overview of SENS4ICE IWT Capabilities

- MVD 15-190 micron droplets
- LWC between 0.15 and 3.0 g/m3
- Temperature 0°C to -30°C
- Sustained speed 14-103 m/s
- Test section: 152×56×112 cm3
- Controls and power supplies can simulate aircraft controls
- Calibrated per SAE ARP 5905

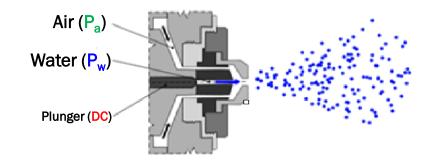
- MVD 9-60 micron droplets
- LWC between 0.1 and 1.5 g/m3
- Temperature 30°C to -20°C
- Sustained speed 10-40 m/s
- Test section: 150×50×50 cm3
- Short spray transients ~ 15s
- Bi-modal SLD and mixed phase capability
- Calibrated per SAE ARP
 5905

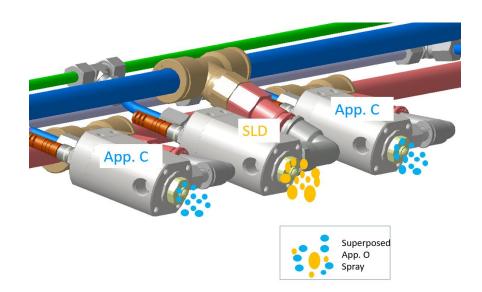


- MVD 8-200 micron droplets
- LWC between 0.1 and 2.5 g/m3
- Temperature +30°C to -40°C
- Sustained speed 5-100 m/s
- Test section: 57×57 cm2 (52x33 cm2 with insert)
- Supercooled Water: 10 to > 200 µm (incl. SLD bi-modal)
- Sea level < Altitude < 40,000ft
- Calibrated per SAE ARP 5905

Collins IWT Characterization

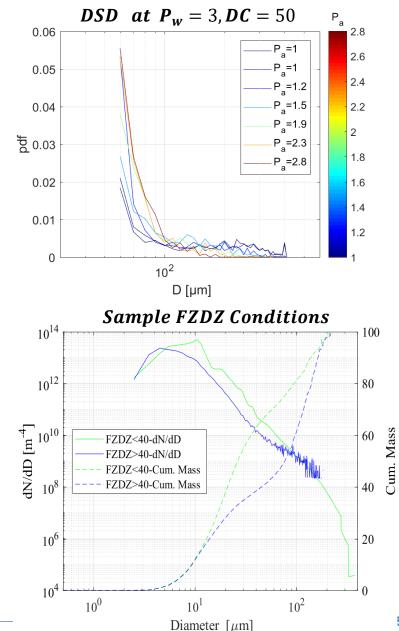
- Initial work was focused on characterizing the App O and App C capabilities of the Collins IWT.
 - The App C calibration procedure is based on the best practices outlined in SAE ARP5905. An icing blade and PDI laser system was utilized to calibrate centerline LWC and droplet MVD respectively.
 - For App O conditions an SEA Multi-Element Probe was used to characterize LWC. The PDI system was coupled with a 1000mm focal length lens and used to characterizing SLD.
- The Collins IWT was further characterized/baselined by DLR using the Nevzorov and CCP probes.
 - The Nevzorov testing was performed with DLR participating remotely, from Germany, via Zoom (Nov. 2020).
 - The CCP testing was performed with CloudSci on site at the IWT on behalf of DLR (Feb. 2021).


CCP Probe



TUBS IWT Upgrade to App. O Conditions

- Shortlisting of atomizers
 - Electrically actuated pulse width modulated airassisted atomizers
 - DSD controlled by water Pressure P_w, air Pressure P_a
 - PWM Duty cycle (DC)enables control of LWC
 - δ D_{max} 450 μm
- Atomizers layout
 - Two sets of atomizers in the top two rows
 - Bimodality from the superposition of sprays
 - Each atomizer set can be actuated independently
 - App. C, App. O and only SLD clouds can be generated



TUBS IWT Cloud Calibration

DSD Characterization

- ♦ CCP
- PDI
- Shadowgraphy
- LWC Characterization
 - Nevzorov
 - ♦ CU-IKP
 - Coriolis flow meter (accuracy ±0.5ml/min)
 - Rotating Cylinder
- Uniformity
 - Grid Tests
 - Accretion Tests
 - Traversing Nevzorov
- Quantified SLD aero-thermal uncertainties

SENS4ICE, EU-funded project, Grant Agreement No 824253

5

29/11/2023

Sensors & IWT Pairing

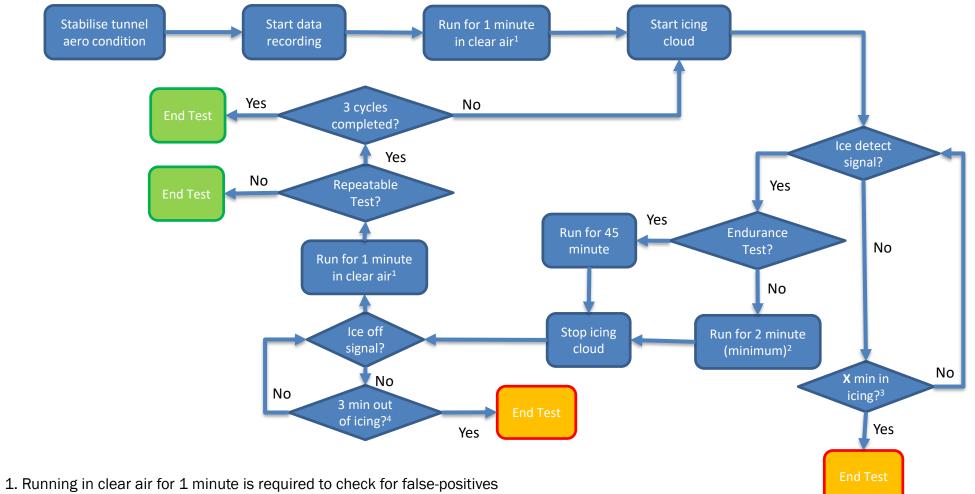
Summary of sensor technologies and distribution between IWT facilities

Developer	Sensor Acronym	Sensor Type	Sensor Principle	IWT Name	IWT Test Status
AEROTEX	AIP	Atmospheric	Isothermal with inertial separation at different sensors along aircraft	NRC, TUBS	Complete
COLLINS	IDS	Atmospheric	Thermal response to heat impulse	Collins, NRC	Complete
DLR	LILD	Accretion	Ultrasonic wave attenuation / phase change	TUBS	Complete
DLR	CM2D [BCPD]	Atmospheric	Single particle optical backscatter	TUBS	Complete
DLR	CM2D [Nevzorov]	Atmospheric	Isothermal measurement of water content	TUBS	Complete
HONEYWELL	SRP	Atmospheric	Collecting backscattered light from particles	Collins, NRC	Complete
INTA	FOD	Accretion	Latent heat measured with fiber optic	NRC	Complete
ONERA	AHDEL	Atmospheric	Particle charging and subsequent measurement of the charge	TUBS	Complete
ONERA	AMPERA	Atmospheric	Measurement of aircraft electric potential	N/A	N/A
SAFRAN	AOD	Atmospheric	Shadowgraphy	TUBS	Cancelled
SAFRAN	PFIDS	Accretion	Optical reflection from accretion	TUBS	Complete

Icing Wind Tunnel Test Matrices

- Three IWT test facilities were used by the sensor developers to complete testing for Gate 2:
 - Collins IWT, USA
 - TUBS IWT, Germany
 - NRC IWT, Canada
- Test Matrices development followed guidelines of ED-103.
- Different capabilities offered by each IWT facility, with very limited overlap.
- The overlap allowed for common test points between all or some of the facilities.

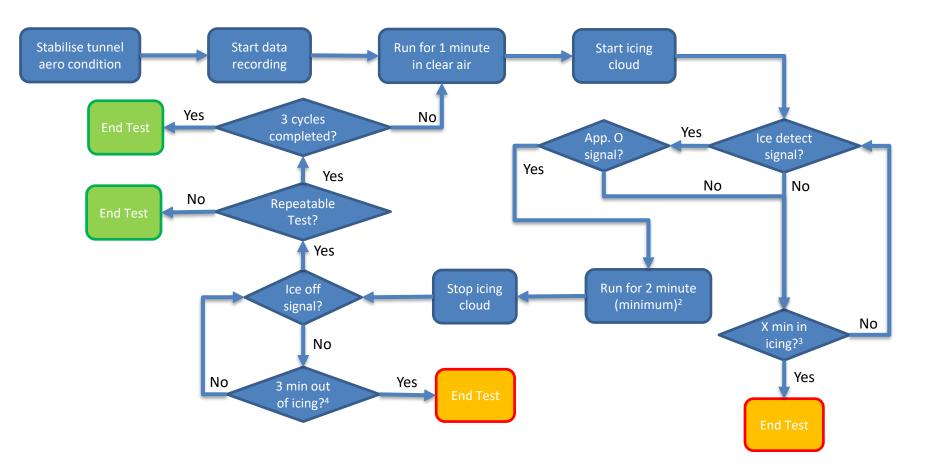
	Арр С						Арр О						
IWT Name	Total Test Points	Test Points Common with All Tunnels	Test Points Common with Two Tunnels	Test Points Used Only at One Tunnel	CIM Test	IM Test Points	Total Test Points	Points Common with All Tunnels	Points Common with One Tunnel	Test Points Used Only at One Tunnel	Total Points [unimodal]	Total Points [bimodal]	
TUBS	19	4	1	14	10	9	18	0	1	17	0	18	
Collins	18	4	3	10	9	9	6	0	1	5	6	0	
NRC	19	4	4	11	9	10	17	0	2	15	4	13	


Test Matrices

- Standard Test Points of Test Matrix: Example Test Matrix - NRC
 - Standard tests for atmospheric sensors
 - Includes required response time (LW:Enter) as per ED-103
 - Includes required discrimination time (LW_O:Enter) as per ED-103
 - Colour coding follows ED-103:
 - Green for App. C CM
 - Blue for App. C IM
 - Dark orange for FZDZ, MVD>40 μm
 - Light orange for FZDZ, MVD<40 μm</p>

	NRC Atmospheric Sensors Results Table - Star									- Standard Tests							
Conditions							Require	ements		Measurements / Results							
Case	Test Type	Condition	Airspee d	Static Temp.	Altitude	MVD	LWC	LW: Enter	LW_O: Enter	LW: Enter	LW: Exit	LW_O: Enter	LW_O: Exit	False Alarm	LWC	MVD	DMAX
[-]	[-]	[-]	[m/s]	[deg. C]	[feet]	[microns]	[g/m ³]	[s]	[s]	[s]	[s]	[s]	[s]	[-]	[g/m ³]	[microns]	[microns]
1	Repeat 2	LW-C CM	40.1	-20	0	15	0.3	36	-								
2	Endurance	LW-C CM	40.1	-10	0	20	0.42	23	-								
3	Standard	LW-C CM	84.9	-10	0	23	0.34	11	-								
4	Repeat 3	LW-C CM	40.1	0	0	23	0.54	126	-								
5	Standard	LW-C CM	84.9	-20	0	30	0.11	33	-								
6	Standard	LW-C CM	84.9	-10	0	40	0.1	36	-								
7	Standard	LW-C CM	84.9	-10	0	35	0.15	24	-								
8	Standard	LW-C CM	84.9	-30	0	35	0.05	72	-								
9	Standard	LW-C CM	84.9	-3.5	0	30	0.35	29	-								
10	Repeat 1	LW-C IM	40.1	-20	0	22	1.5	6	-								
11	Standard	LW-C IM	40.1	-10	0	28	1.2	10	-								
12	Standard	LW-C IM	84.9	-20	0	23	1.3	3	-								
13	Standard	LW-C IM	40.1	-20	0	42	0.3	26	-								
14	Standard	LW-C IM	84.9	-20	0	20	1.75	3	-								
15	Standard	LW-C IM	84.9	-10	0	20	2.25	5	-								
16	Standard	LW-C IM	84.9	-10	0	20	0.5	8	-								
17	Standard	LW-C IM	84.9	-20	0	31	0.75	5	-								
18	Standard	LW-C IM	84.9	0	0	20	2.5	57	-								
19	Standard	LW-C IM	84.9	-3.5	0	35	1	25	-								
20	Standard	unimodal	76.1	-17.7	0	163.5	0.82	4	5								
21	Standard	unimodal	40.1	-17.7	0	122	0.46	15	24								
22	Repeat 4	LW-FZDZ	79.7	-20	0	106	0.4	9	17								
23	Standard	LW-FZDZ	79.7	-25	0	20	0.29	15	169								
24	Standard	LW-FZDZ	84.9	-15	0	20	0.35	12	132								
25	Standard	LW-FZDZ	84.9	-10	0	20	0.38	11	122								
26	Standard	LW-FZDZ	84.9	-3.5	0	20	0.42	28	110								
27	Standard	LW-FZDZ	84.9	-25	0	20	0.15	27	308								
28	Standard	LW-FZDZ	84.9	-15	0	20	0.18	22	257								
29	Standard	LW-FZDZ	84.9	-10	0	20	0.2	20	231								
30	Standard	LW-FZDZ	84.9	-3.5	0	20	0.21	29	221								
31	Standard	LW-FZDZ	84.9	-25	0	110	0.18	18	35								
32	Standard	LW-FZDZ	84.9	-15	0	110	0.22	15	29								
33	Standard	LW-FZDZ	84.9	-10	0	110	0.23	14	28								
34	Standard	LW-FZDZ	84.9	-3.5	0	110	0.26	28	29								
35	Standard	unimodal	84.9	-10	0	180	0.25	13	15								
36	Standard	unimodal	84.9	-10	0	220	0.25	13	14								

Test Procedures – App C Conditions


- 2. Running for minimum of 2 minutes in icing after ice-detect is required to check for false-negatives
- 3. X is the target calculated detection time + 1 minute
- 4. Based on AS5498A time to detect exit being a maximum of 3 minutes

Notes:

SENS4ICE, EU-funded project, Grant Agreement No 824253

Test Procedures – App O Conditions

Notes: 1. Running in clear air for 1 minute is required to check for false-positives

2. Running for minimum of 2 minutes in icing after ice-detect is required to check for false-negatives

3. X is the target calculated detection time + 1 minute

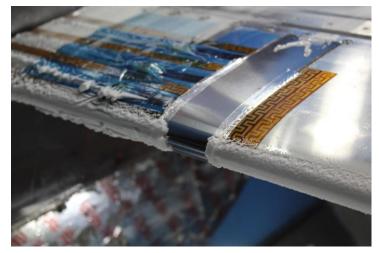
4. Based on AS5498A time to detect exit being a maximum of 3 minutes

-

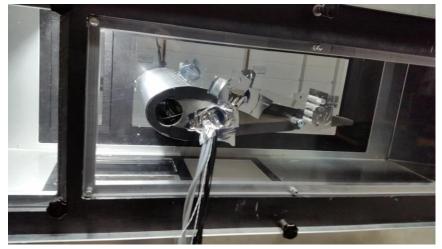
SENS4ICE, EU-funded project, Grant Agreement No 824253

Hardware shipped and installed for testing

INTA FOD at NRC

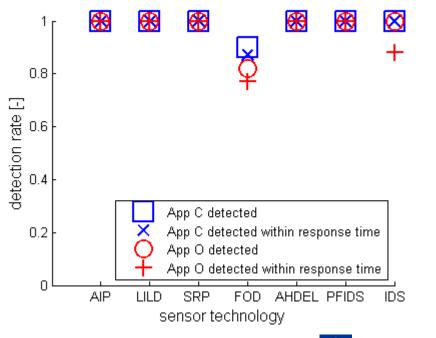


ATX-AIP at NRC



SENS4ICE, EU-funded project, Grant Agreement No 824253

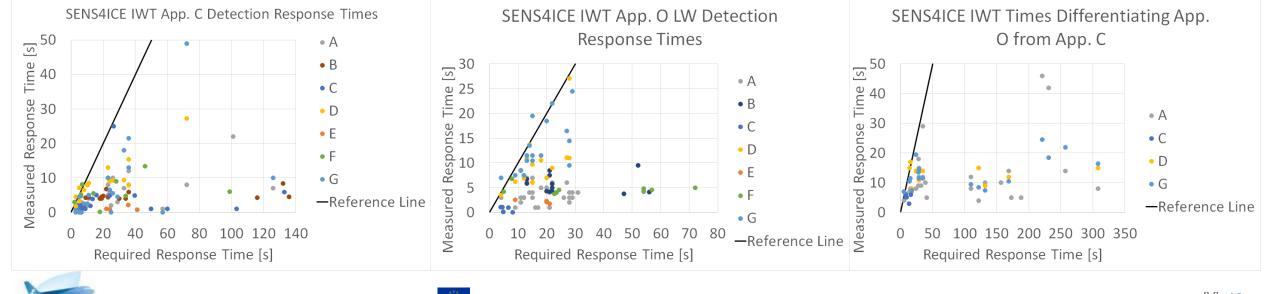
Collins-IDS at Collins


DLR LILD at TUBS

This document does not contain any export controlled technical data

SENS4ICE sensor technologies IWT testing detection rates for App. C and O icing condition te<u>st points</u>

- test cases successfully detected related to total number of test cases
- excluding CM2D scientific/reference sensor and AOD that was withdrawn from IWT testing in the context of Covid-19 related delays
- required maximum response time
 - as per EUROCAE inflight icing systems standard ED-103
 - maximum response time depending on icing condition



	App. C								
Sensor Name	Test Points Detected [%]	Test Points detected within Response Time [%]	Test Points detected within 1.5X Response Time [%]	Average MVD error	Average LWC error	Average ACC rate error			
ATX – AIP	100%	100%	100%	N/A	N/A	N/A			
Collins – IDS	100%	100%	100%	N/A	N/A	N/A			
DLR – LILD	96%	100%	100%	N/A	N/A	+147%			
DLR – CM2D									
HON – SRP	100%	100%	100%	14%	28%	N/A			
INTA - FOD	90%	87%	90%	N/A	75%	66%			
ONERA - AHDEL	100%	100%	100%	N/A	N/A	N/A			
ZAET - AOD	IV	VT testing not	completed. Fo	r details see in	dividual repo	rt			
ZAET - PFIDS	100 %	100%	100%	N/A	N/A	+187%			

			App. O			
Sensor Name	Test Points Detected [%]	Test Points detected within Response Time [%]	Test Points detected within 1.5X Response Time [%]	Average MVD error	Average LWC error	Average ACC rate error
ATX – AIP	100%	100%	100%	N/A	N/A	N/A
Collins – IDS	100%	88.24%	94.12%	N/A	N/A	N/A
DLR – LILD	100%	100%	100%	N/A	N/A	+40.5%
DLR – CM2D						
HON – SRP	100%	100%	100%	41%	67%	N/A
INTA - FOD	82%	77%	77%	N/A	36%	48%
ONERA - AHDEL	100%	100%	100%	N/A	N/A	N/A
ZAET - AOD	IWT testing no	ot completed.	For details see in	dividual rep	ort	
ZAET – PFIDS	100%	100%	100%	N/A	N/A	+133%

SENS4ICE sensor technologies IWT measured sensor response times compared to required response times

- anonymised results
- required maximum response time as per EUROCAE inflight icing systems standard ED-103 (depending on icing condition)
- App. C test points liquid water (LW) detection
- App. O test points liquid water (LW) detection
- differentiating App. C conditions from App. O conditions (for sensors providing differentiation information)

SENS4ICE, EU-funded project, Grant Agreement No 824253

Summary of IWT Test Results

Outcome of technology evaluation at Gate 2 review

Sensor / Developer	ensor / Developer Sensor Type		Outcome of Evaluation based on IWT Results		
AIP / AeroTex	Atmospheric	NRC, TUBS	Pass		
IDS / Collins	Atmospheric	Collins and NRC	Pass		
LILD / DLR	Accretion	TUBS	Pass		
SRP / Honeywell	Atmospheric	Collins and NRC	Pass		
FOD / INTA	Accretion	NRC	Pass		
AHDEL / ONERA	Atmospheric	TUBS	Stop developments with SENS4ICE		
AMPERA / ONERA	Atmospheric	N/A	Pass		
AOD / Safran	Atmospheric	TUBS	Stop developments with SENS4ICE		
PFIDS / Safran	Accretion	TUBS	Pass		
CM2D [BCPD] / DLR	Atmospheric	TUBS	Pass		
CM2D [Nevzorov] /DLR	Atmospheric	TUBS	Pass		

IWT Operators Lessons Learned and Takeaways

- App. O condition characterization at Collins and upgrades at TUBS required an extensive testing campaign.
- Gained further understanding of IWT characterization equipment, such as the Nevzorov and CCP probes, and measurement methodologies, such as using the SEA Multi-Element Probe half-pipe to measure App. O conditions.
- IWT facilities enhancements for SLD conditions are required
- No standards exist for tunnel operational capabilities and reference instruments for SLD.
- Further collaborative efforts are needed to standardize icing wind tunnels for SLD conditions.
- Necessary for future product development and certification.

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 824253.

If not acknowledged, images courtesy of the consortium partners.

This presentation reflects only the consortium's view. The European Commission and the European Climate, Infrastructure and Environment Executive Agency (CINEA) are not responsible for any use that may be made of the information it contains.

> Visit our website <u>www.sens4ice-project.eu</u> and Linkedin #sens4iceproject

SENS4ICE